Y BridgePay

NETWORK SOLUTIONS

BridgeComm Interface API Guide

BridgeComm Interface APl Guide

Version 2.3.7

December 18, 2015

Copyright © 2011-2015, BridgePay Network Solutions, Inc. All rights reserved.

The information contained herein is the confidential and proprietary property of BridgePay Network
Solutions, Inc. and may not be used, distributed, modified, disclosed, or reproduced without the
express written permission.

Table of Contents

(O aT- T o] (=Y g T [a1 1o o 0T 1) o S 4
0 B O 1YY oV 1= 1P PR PPPPPRPTPPN 4
1.2, OVEIAII PrOCESS . .vveieieeiiieeeiieeiite st ste e st e st e st e st esbeesabe e s bee s e beeeabeesabeesaseesabeesabeesabaesabeesabeesabeesabaesaseesnbaesbeesabes 6
B 0] o1 i ={ U] = e] o FO T OO O PO TSP P OO P PU PP PROPPRPPPRTON 6
1.4. TranSaCtion REGUEST TYPESunniiiiiiiitiieiiittee e e ettt e e e e ettt e e e e e s e s aaa b ettt eeeeesaabseteeeeeesaannbaeaeeeesasaanbbeaeaeeeesannses 6
N O 1T o)l To 1T oY =T TR P PSPPI 7
1.6. Response Handling and Pass-Through Data.........c.ceeuiiiiiiiiieiiieeie ettt s s 7
A AV = o o T ol o Yo U T USSR 7
1.8. PaSSWOIA IMANAZEMENT.......uviieeiiiieeeiteeesittee e e sttt eeeeteeeestaeeeasataeeeassaee s sseeaasstaeeaasssasesssaeeaassseseasssessasseeeasssesannes 9
IS B o Yo NNV T O oY ol o) o SRS 10
00 0 TR = 1 = 11
0 T U ol o T < o= o USSP 11

Chapter 2. IMPIEMENTALION........cciiiiii ittt e et bt e et b et e e st et e e st anr e e e e sbbe e e e sabeeeesbneeesanens 12
2.1. Web Service Operation & Data CONTIACESc..eiiiiiriieiiieeiee sttt sttt sttt sttt e st e s b e saeesbeeesneesanes 12

N N B 2 - I =T [V =T PP PPPRPPPPPPPPPPRE 12
Y - Y- B U1 o To] TP PPP P PPPRPPPPPPPPPPRE 13
2.2, SPECITIC REQUEST LAYOULS ...eeiiiiiiieceiiieecciie e ettt e eette e e sttee e e tteeeseatteeestbeeeesataeeeessaaeessssaesassaeseansaseesssasesnnssessansees 14
2.2.1. One-Time Token (REqQUEST TYPE 000)....ccccuiiieeiireeeiiieeeeitieeeesteeeeeteeeestteeeessseesessseeessseesesssaessessseessnssesenn 14
0 0 B 0= 0T Y OO PP PO PPPPPPTTON 16
2.2.2. Multi-Use ToKen (REQUEST D0L)cccueieiueeiiiieiieeeiieeesteesteeesteeesteeesseeesteeessaeeseeessseesseeessaessseesssesssseessssensses 17
2.2.2. 0. RESPONSE .eeeiiiiiei ittt ettt ettt e et e e e a e e e s s bt et e s e s r e te e e e e se b et et e e e s e s anres 19
2.2.3. Multi-Use Token Security Code (REQUEST 002)cc.eeruieriiriierieiieiiesieerie ettt sttt et sbesaeseesaeesaeeneeenes 20
2.2.3. L. RS PONSE i 21
2.2.4. Generate Encryption Key (ReqUEST 003)ccccciiiiiiiiieeeiiieeeeiiee e eeiee e e stteeeeeate e e eeataeeestbeeesestaeseeassseesnsneeens 22
2.2 8. L. RS PONSE i 23
2.2.5. AUthOrization (REQUEST D04)ccueeiieeeeee ettt eitee ettt steesteeesteeesteeesaeeestaeessaessaeessaeesseessaeeseeessseessseessseensses 24
2.2, 5.0 RESPONSE et a e e e e e e e e e aaaaaeeas 32
2.2.6. BIN LOOKUP (REQUESE D05)uvvieveeeieeeieeeteeeiteeeteeesteeesteeesseeeseeessseesseesssessssasssesssssesssesssseessseesssessssssssses 35
W T B 0= 1] o Lo] o[- PP PP PP P PP PPPPPPPPPPPN 36
2.2.7. Check Password Expiration (REQUEST 006)........c..eieiiueeeeiiieeeeiiieeeeeieeeestteeeestteeeessaeeestseeessssaeseesseessssseneas 37
2.2, 7. L. RS PONSE i 38
2.2.8. Change PassWord (REQUEST D07).....cccuuieeeiiieeeeiiieeeecieeeeeiteeeestteeeeetteeeestbeeeesateeeeessaeaesntaesaanssasesensssessnssenann 39
2.2.8. L. RS PONSE i 40
2.2.9. Get Merchant INfo (REQUESE D11eiecuieeiiiieieecieeereeesteeesite et e e stee e ta e e staeeteeesaaeesaeessaeesaeesseeensseessseenseens 41
B B R 0= o Lo o [P PP PP P PP PPPPPPPPPPP 42
2.2.10. VOid/Refund (REQUEST D12)ccueeiueiiiiireere e eteeeteeeteeeteeteeaeseesaeesteeeteeseeasesssesteesbeenbeensessseensesaeesseenseenns 43
2.2.00. 0. RESPONSE it 45
2.2.11. Tokenize AccouNnt (REQUEST 013)uiiiiiiiiieieiiie ettt ettt e e ettt e et e e e e bt e e e eeate e e eeabaeeeeabbeeeesbaeeeeasaseesasseaaan 46
2.2, 00 L. RESPONSE i 47
2.2.12. Capture (REGUEST O19) ...cuuiiieeeiiie ettt ettt e eett et e ettt e e e ettt e e eette e e eetaaeeesabaeeeeaateeesassaeaeaassesaeastaseeansseeesasseaann 48
2.2.02. 0. RESPONSE ieeieeieeieeeee ettt e aaaaaaaaaaaeas 50
2.2.13. Initiate Settlement (REQUEST 020)......ccciiiiieieiiieeiciieeesiee e et e e eeeee e e s e e e e sate e e ssnaeeeesnsaeeeastaeesnnsneessnnseeenn 51
2.2.03. 0. RESPONSE ieeiieeeieeeeee ettt a e e e e e e e e e e e e e e e e e e aaaaaaaaaeas 52
2.2.14. Manage Gift Card (REQUESE 022).......ueiiiiiiieieieeeecieeeestee s et e e seeee e e staeesesateeessnsaeeesssaeeeasssaeesenssnessnsseeean 53
2.2, 0. L RESPONSE i 55
2.2.15. PiNG (REQUEST 099)urieieiiiie ettt ettt e e ettt e e ettt e e e etteeeestteeeeeabeeeeetaaeeeeabseeeasssseaassasaeassesaeassanseanssseesasseeann 56
2,205, L RESPONSE i 57

. B C 1T o [T o Toll = g o T gl 2T o Yo T 11 PRSPPI 58

A o] = o 15 SOR

Al
A.2.
A3.
A4
A.5.
A.6.
A7.
A8.
A.9.

RESPONSECOAE VAIUESevveeeiiiie ettt ettt e ettt e st e e et e e e e e aeae e e sabeeeesataeesaassaeesnsseeeeastaeeeansseeesnsseeeanssseesnnsnes
Baseb64-Encoded SOAP Message Sample
Including Merchant INfOrmMationoouio ittt st s b e s e sbeesanee e
Industry Specific Fields... .
Track Data HanIiNG .c....ooiueeiiiieieee ettt ettt sbe e st be e s bt e e sbeesbe e e bt e s beeeneeeanes
PUIFCRASE TOKENS .veieiiieeie ettt ettt st sttt e s bt e st e e s teesate e sabeesabeesabeesabeesabeesabeesabeesaseesabaesasaesabaenaseesns
EMV Processing
Non Gateway Transactions (Check/Cash)
(O =Yl (A o oYl 1Y [V- SRR

F 0 O TR I = U1 = T o T

Changes and Maodifications

The table below lists changes made to the BridgeComm Interface API Guide:

2.0 Document re-write and reorganization All

2.1 Additional LEVEL Il / LEVEL Il elements documented in request type 004 pp. 18 - 24

2.1.2 Securelink Fields and Process Added Page 18

2.1.2 Explanation of Level Ill acceptance Page 19

2.13 Refinement of Level Il Item Fields pp.22-25

2.1.3 Added Appendix A.4 Merchant Lookup fields Page 49

2.1.4 Added Request Types 011, 012 &019 pp. 8,43 -48

2.15 Removed deprecated/disused request types.

2.2.0 New Release Documentation

2.3.0 New Release Documentation

2.3.1 Corrected lodging formatting section 53

2.3.2 Corrected MSRKey to MSRKSN, Added VoiceAuthCode element, Added 8,12-27,41, 51-
Encryption Key Request data and Healthcare Fields, changes to Lodging 55

2.3.3 Added PartialAuthorization element and Track Data Handling change information | 12-13, 15-16, 22-

23, 25,27, 56

234 Added ACH Tokenization Method (013), Added authorize by 4,10, 12, 23, 24,
WalletPaymentMethodID feature. Expanded Transaction Industry to include SEC | 27-29, 38, 45, 46,
codes for ACH. Expanded Lodging Information. Included information regarding 59, 60, 64, 65
Purchase Tokens.

2.3.5 Added EMV, Check Verification and Cash support. 24,26,28-30, 67-
71

2.3.6 Added Gift Card Management Request (022) for future release. 53-55

2.3.7 Added TPl Emulation documentation, Car Rental fields, Ping Method (099). 4,6,12,24-34,

Modified Amount fields, removed Currency Code on requests, added Contract Id 59-62, 65-71, 82
and corrected Lodging Field information and Response Codes.

Chapter 1.

Introduction

1.1. Overview

The BridgePay Communication API provides an Internet-facing web services interface for requesting a
variety of payment related services in real-time. The interface is a Windows Communication Foundation
(WCF) web service using the request/response architecture. It provides five access methodsghat allow
for different formatting options for interacting with the core communication library, and the ability to
request a one-time purchase token for more secure access:

Access Method Description

string ProcessRequesitring requestMsg)

(https://url/PaymentService/RequestHandler.svc)

This access method accepts a base64
encoded XML formatted request message
and returns a base64 encoded XML
formatted response.

string ProcessJsonRequdstring requestMsg)

(https://url/PaymentService/RequestHandler.svc)

This access method accepts a base64
encode JSON formatted request message
and returns a base64 encoded JSON
formatted response.

string ProcessMessage

(https://url/PaymentService/Default.aspx)

This access method accepts an HTML
formatted query string with parameters
and returns an HTML formatted response,
transformed by a client selected XSLT
transform.

string AcquirePurchaseTokdetring userName, string
password, string certificationld, int
transactionAmount, string purchaserinfo, string
transactioninfo)

(https://url/PaymentService/ActionService.svc)

This access method access specific
parameters to pre-authenticate a purchase.
When used, the non-sensitive details of a
transaction are used to create a one-time
purchase token that can be sent with the
transaction request. A GUID defining the
purchase token is returned upon a
successful request.

Response ProcessCreditCafsktring UserName, string
TransType, string CardNum, string ExpDate, string
MagData, string NameOnCard, string Amount, string
InvNum, string PNRef, string ZIP, string Street, string
CVNum, string ExtData)

(https://url/PaymentService/TPIRequestHandler.asmx)

This access method provides limited
functionality for migrating from the legacy
TPI gateway to the new BridgePay gateway.
This method must not be used for new
integrations, especially for those interested
in using EMV.

QBridgePay

https://url/PaymentService/RequestHandler.svc
https://url/PaymentService/RequestHandler.svc
https://url/PaymentService/Default.aspx
https://url/PaymentService/ActionService.svc
https://url/PaymentService/TPIRequestHandler.asmx

Merchant Identification

A core component of the transaction processing cycle is identifying the merchant account used for the
authorization action. The merchant account to be used can be identified by a variety of methods. This
process and the method used are referred to as the “merchant lookup strategy” and the “merchant
lookup pattern”. The strategy selected defines the pattern used. A strategy can be as simple as “client
code” or as complex as “client code, store ID, & terminal ID”. The system is designed to support
whatever method the calling system or service needs to be able to manage the merchant accounts
being utilized. The details of the merchant lookup strategy is defined and discussed during your
implementation process.

PassThrough Fields

In addition, the service request system supports the submission of extraneous, non-payment data
elements that are submitted specifically as “pass through” information to be used for reporting and
accounting purposes. These elements may include items like: invoice number, operator ID, service code,
or any other reporting data that an interfacing system might need.

Request/Response Structure

Requests are formatted and sent to the appropriate handler/processor, and BridgePay sends a
corresponding response in real-time. BridgePay returns responses to the requesting system as a web
service response message. The response includes the unique transaction identifier, request type,
response code, and may include a tokenized representation of payment information, BIN response, or
other data elements based on the initial request type.

QBridgePay

1.2. Overall Process

The general process cycle for a submitted service request is as follows:

9 Web Service request received by BridgePay.

Iu

9 Superficial evaluation of request performed to determine genera
client access credentials.

properness” and to retrieve

9 Client access credentials used to validate client access, assign proper access rolls and to access
client configuration for details on request and response formats.

Request message evaluated based on request format details.
Request processed.

Results of request are formatted based on response message format details.

=A =4 =4 =4

Response message returned to requesting system.

1.3. Configuration

In order for any system to successfully communicate with the BridgePay gateway, the system (or user)
must be setup for access. This includes assigning the system (or user) a user ID, a password and defining
the type of access that the system (or user) will need. Multiple users at a site could share a common
configuration but it is not required. Each connection profile will contain the supported access options
and the appropriate response format.

1.4. Transaction Request Types

BridgeComm is designed to support a variety of services related to payment processing. These services
are defined as request types. Depending upon the access method used, some request types may not be
available. The following table lists the currently available services, the request types used to access the
service and which access methods support them.

Service (and service code) JSON | Query String
000

One Time Use Token V

Multi-Use Token 001 \/ \/

Multi-Use Token CSV 002 \/

Process Payment 004 \/ \/ \/ \/
Is Debit (BIN lookup) 005 \/ \/

Seconds Until Password Expires 006 \/

Change Password 007 \/

Get Merchant Data 011 \/ \/

Void/Refund 012 \ \VJ \/ \/
Tokenize Account 013 \/

Capture 019 \/ \/
Initiate Settlement 020 \/

Manage Gift Card 022

Ping 099 \/ \/

QBridgePay

1.5. Client Identifiers

Before any processing can begin, BridgeComm must identify the client used to access the system. This is
provided by a field called the Clientldentifierfield. This field does not indicate a user, merchant or other
processing entity of that nature. Instead, it identifies an integration methodology and the rights and
privileges therein.

Each Client Identifier defines what request types are available, where and how to retrieve merchant
lookup information, and what specific access method is permitted.

Your Client Identifier will be provided to you by BridgePay before you being testing on the BridgeComm
test platform.

1.6. Response Handling and Pass-Through Data

In some cases, specific response formats are generated to meet client needs. Depending on the
integration method used, different options are available for response handling.

ProcessMessage

For those integrating to BridgeComm using the ProcessMessage access method, a custom XSLT will be
generated that will transform the data into the style and format you require. Only the standard
response elements are available for those integration via this access method.

ProcessRequest/ProcessJsonRequest

For those integrating to BridgeComm using the ProcessRequest or ProcessJsonRequest access methods,
clients may require that the response contain specific information that was included in the proceeding
request. This type of information is referred to as “pass-through data”. BridgeComm can be instructed
to return pass-through data to the requesting system in every successful response. This feature is
currently available for the ProcessRequesind ProcessJsonRequestcess methods only. Details on
how to instruct BridgeComm to return these “pass-through” data elements can be found later in this
document.

1.7. Merchant Lookup

An important feature of the BridgePay gateway is its ability to store customer merchant account
information (on behalf of customers) for transaction processing and settlement. The gateway supports
storing merchant account information for each customer that uses BridgePay services.

QBridgePay 7

As the gateway has no knowledge of the internal structure of any of the systems that will be utilizing
gateway services, a flexible merchant account location solution has been developed. As part of initial
setup and configuration, each service solution that will make use of the BridgePay gateway works with
the technical team to define their merchant account lookup key (or strategy). This key can be comprised
of as many components as is required to support the granularity needed by the utilizing system. The key
can be comprised of existing data elements or can be extensions that only exist to facility merchant
account lookup. The only requirement is that the lookup components must be supplied in each service
call.

You can also find more information about Merchant Lookup in Appendix A.3.
Examples of various lookup strategies are as follows:

Clientldentifier

Clientldentifier : CustomerCode

Clientldentifier : CustomerCode : ProductType
Storeld : TerminallD

= =4 =4 a4 -

Clientldentifier : Storeld : ProductType

The data elements used for merchant account lookup are entirely flexible and defined by the customer
during implementation.

EXAMPLE

To process an authorization via the ProcessRequest access method for a merchant whose lookup
strategy uses the Clientldentifier:Gateway:MerchantKey merchant lookup pattern, the RequestMessage
element would have the following tags embedded within it:

<?xml v ersion="1.0" encoding="utf -16"?>
<requestHeader>

<requestMessage>
<Gateway>XXX/Gateway>
<MerchantKey>XXX/MerchantKey>
<MerchantPassword> XX>/MerchantPassword>
</requestMessage>
<requestHeader>

To process an authorization via the ProcessMessage access method for a merchant whose lookup
strategy uses the Clientldentifier:Gateway:MerchantKey merchant lookup pattern, parameters would be
added to the query string:

https://url/PaymentService/Default.aspx o A Clightldentifier=XXX &Gateway=XXX&MerchantKey=XXX A

QBridgePay 8

To process an authorization via the ProcessJsonRequest access method for a merchant whose lookup
strategy uses the Clientldentifier:Gateway:MerchantKey merchant lookup pattern, parameters would be
added to the JSON object:

"dataElements": [

{"name": "clientide ntifier", "value": "XXX" }
{"name":" gateway", "value": " XXX},
{"name":" merchantkey ", "value": " XXX},

For those customers you are not using specialized lookup patterns, the BridgePay merchant id and
merchant account id must be provided on every message. These are provided in the MyBridgePay
product at the time of boarding. All of the examples shown in this documentation will assume that the
client is sending merchant lookup information using these IDs. If your implementation is customized
with a different merchant lookup pattern, these parameters will not be necessary.

1.8. Password Management

In accordance with industry best practices, BridgePay users should change their passwords a minimum
of every 90 days. BridgeComm provides service requests to support these user maintenance activities.

ﬂ Check Password Expiration Request (08®eturns the number of seconds remaining before the
current user’s password will expire.

ﬂ Update Password Request (007 Updates the user’s password and resets the expiry timer.

If the user’s password is not changed before it expires, the next time that user makes a request through
BridgeComm, the request will fail and return a response indicating that the password has expired (code
“10023"). Until the user’s password is updated, the user will be unable to perform any other requests in
the BridgePay system.

Note: Service accounts argenerally set tonot expire. A service account is an account that is not
accessed or used by an end user to lagp the system the account is only used by softwaresystem
to facilitate transaction processinpetween systerns.

QBridgePay 9

1.9. Hardware Encryption

Some requests can accept hardware encrypted data. If the client uses devices that encrypt track data,
that client must be specifically configured with an indicator that hardware encryption will be utilized as
well as what type of decryption methods will be needed. In addition to accepting the data encrypted,
there are other data elements that must be passed in with the request. These fields should be added as
XML element tags in the RequestMessage element, JSON object or as query parameters in the request
just as any other field would be added. For example, to process an authorization using the
ProcessRequest access method for a transaction using a SecureMagV2 device, the RequestMessage
element would have the following additional tags embedded within it:

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>

<requestMessage>
<MSRSMXXX/ MSRKSN
<SecureFormat> XXX/SecureFormat>
<BDKSlot>XX>/BDKSlot>
</requestMessage>
</requestHeader>

When using the ProcessMessage access method, they would be added in a similar fashion as follows:

https://url/PaymentService/Default.aspx 0 AMSRKeyXXX&ecureFormat =XXX8DKSlot=XXX¥ A

When using ProcessJsonRequest access method, they would be added in a similar fashion as follows:

{

"dataElements": [

{"name": "msrkey", "value": " XXX},
{"name": "secureformat”, “value": " XXX},

{"name": "bdkslot", "value": " XXX},

QBridgePay 10

1.10. Testing

In the live environment, transactions must be initiated over an SSL-protected connection using a
minimum of 128-bit encryption to protect sensitive data. Initial testing can be performed over an
unencrypted connection; however, testing must be performed over an SSL-encrypted channel before a
client can be certified to production. Only test card data may be transmitted -no live payment
information should ever be transmitted to the test system

| A test or live merchant account with BridgePay is necessary to successfully process
transactions. To acquire a test account, contact the BridgePay Developer Support
Department at developersupport@bridgepaynetwork.coror fill out the test account
request form at http://bridgepaynetwork.com/testAccount.php.

You may use the following cards in testing:

Card Type Expiry Date | Security Code

MasterCard 5439750001500347
Visa 4005550000000019
Discover 60011111111111117
Diners 36999999999999
AMEX 374255312721002

If you implement swiped, card-present transactions (Credit, Debit, EBT, Gift Cards), please send a
request to developersupport@bridgepaynetwork.coirand we will ship a set of test cards to you.

1.11. Purchase Tokens

Purchase Tokens provide a more secure way of passing authentication data to BridgePay from
integrated applications such as websites that require sending username and password information as
part of the request.

Conceptually, the integrating software calls a method on BridgeComm to pre-authenticate a specific
transaction request. BridgeComm then records the imminent transaction, generates and returns a GUID
identifying the purchase token, and begins a 15 minute count-down timer on its usage. When sending
the actualtransaction to BridgeComm for processing, the merchant replaces their username and
password information with the previously acquired purchase token GUID. BridgeComm then compares
the details of the transaction with the referenced purchase token.

If the transaction details match, the transaction is processed and the purchase token is consumed,
unable to be used again. If the transaction details do not match, the transaction is declined and the
purchase token is consumed, unable to be used again. If the purchase token remains unused for 15
minutes, the token is consumed, unable to be used.

For more information regarding Purchase Tokens, how to acquire one and how to consume one, see
Appendix A.6 Purchase Tokens.

QBridgePay 11

mailto:developersupport@bridgepaynetwork.com
http://bridgepaynetwork.com/testAccount.php
mailto:developersupport@bridgepaynetwork.com

Chapter 2.1 hlementation

This chapter describes how to integrate with the BridgeComm Interface.

2.1. Web Service Operation & Data Contracts

The request and response parameters for the ProcessRequest, ProcesslsonRequest and ProcessMessage
access methods are identical. The difference between the contracts is in the formatting of the request
and response strings.

ﬂ ProcessRequest Base64- encoded XML formatted request and response.
ﬂ ProcesdsorRequest- Base64- encoded JSON formatted request and response.

ﬂ ProcessMessage HTML-formatted request; custom-formatted response.

NOTEIn all tables below, “Length” refers to the maximum length of a value and this may not indicate
the “standard” length.

NOTEIn all tables below, an “R” in the first column indicates a required value. Failure to supply a
required value as part of a service request will result in an error. A required value in a response will
always be present.

2.1.1. Base Request

The base request message requires the following parameters:

R | Clientldentifier string Unique value to identify the application that is integrating with
BridgeComm. Provided by BridgePay

R | TransactionID string 60 Unique value to identify the transaction. Generated by the integrating
application.
R | RequestType numeric 3 Identifies the type of request message submitted. Valid values are:
1 000 Z One Time Token Request
1 001 Z Multi - Use Token Request
1 002 Z Multi - Use Token Security Code Request
1 004 Z Authorization Request
1 005 Z BIN Lookup Request
1 006 Z Check Password Expiration Request
1 007 Z Update Password Request
1 011 Z Get Merchant Info
1 012 Z Void/Refund
1 019 Z Capture
T 020 Z Initiate Settlement
1 022 Z Manage Gift Card Request
T 099 Z Ping

QBridgePay 12

RequestDateTime | numeric The date and time the request was sent. The default format is
YYYYMMDDHHMMSSing military time. This format can be overridden

using the validationFormatattribute.

R | User string 150 Provided by BridgePayNot required whenconsuminga Purchase
Token.
R | Password string 255 Initially provided by BridgePayNot required whenconsuminga

Purchase Token.

R | requestMessage string n/a XML-formatted request message string. Required for ProcessRequest
only. (See section 2.2 for details)

2.1.2. Base Response

The base response message returns the following parameters:

B .=] =

TransactionlD string BridgeComm echoes back the TransactionID value from the
request message.

R | RequestType numeric 3 BridgeComm echoes back the RequestType value from the request
message. See 2.1.1 Error! Reference source not founéor valid
values.

R | ResponseCode numeric 5 The five-digit response code describing the results of the

transaction. See Appendix A.1 for valid values.

R | responseMessage string n/a XML-formatted response message string. Provided by
ProcessRequest only. See section 2.2 for details.

QBridgePay 13

2.2. Specific Request Layouts

The following sections describe the specific layouts for each request and response for each request

type.

1 When using ProcessRequesthe request data elements are embedded within a parent
element called requestMessageResponse data elements are embedded within a parent
element called responseMessage

1 When using ProcessJsonRequeshe request data elements are added into the JSON request.
Response data elements are included in the JSON response object.

1 When using ProcessMessagehe request data elements are added as query parameters to the
request string. Response data elements may be provided in the response if the XSLT is coded to

return them.

2.2.1. One-Time Token (Request Type 000)

Use the one-time token request to generate a single-use token for authorizing a transaction.

The data elements for this request type are as follows:

PaymentAccountNumber

1 | ExpirationDate

1 | SecurityCode

2 | TrackData

MSRKey

SecureFormat

BDKSlot

Trackl

Track2

EncryptionID

numeric

string

string

numeric

string

string

string

string

numeric

string

string

string

13-19

Credit card number. Required for keyed transactions.

Credit card’s expiration date. Supported formats are: MMYY,
MMYYYY, MM/YY, and MM/YYYY. Required for keyed
transactions.

Card Verification Number. A 3 or 4-digit security code that is
printed on the front or back of a card but not encoded on the
magnetic stripe data. Required for keyed transactions.

The track 1 data from the credit card. Required for swiped
transactions.

Alternate element “Track” may also be used for this item.

When present, indicates that Hardware Encryption is being used
and provides the MagStripeReader’s key for decryption.

When present, indicates the format to use for decrypting the
track data.

When present, indicates the Base Derived Key slot to use as an
override for Hardware Decryption.

Overrides TrackData/Track fields. Validated against acceptable
characters in card swipe.

Overrides TrackData / Track fields. Validated against acceptable
characters in card swipe.

The encryption ID identifying the type of encryption used on the
sensitive card holder data. See 2.2.4 Generate Encryption Key
Request.

QBridgePay

14

The parameters marked with a “1” are co-dependent. If one of these parameters is used, all of the co-
dependent parameters must be used. The parameters marked with a “2” are co-dependent. If one of
these parameters is used, all of the co-dependent parameters must be used. Etc.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier></Clientldentifier>
<Transaction|D></Transaction|D>
<RequestType>000</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>
<PaymentAccountNumber></PaymentAccountNumber>
<ExpirationDate></ExpirationDate>
<SecurityCode></SecurityCode>
<TrackData></Tr ackData>
<Encryption|D></EncryptionID>
<Track1l></Track1l>
<Track2></Track2>
<MSRKey></MSRKey>
<SecureFormat></SecureFormat>
<BDKSlot></BDKSlot>
</requestMessage>
</requestHeader>

QBridgePay

2.2.1.1. Response

The response message is included in the GetTokenelement and returns the following data elements:

I e

‘ R ‘ Token Numeric ‘ The token to be used for authorization.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<GetToken>
<TransactionID>< /Transaction|D>
<RequestType>000</RequestType>
<ResponseCode>00000</ResponseCode>
<responseMessage>
<Token></Token>
</responseMessage>
</GetToken>

QBridgePay 16

2.2.2. Multi-Use Token (Request 001)

This request method is used to tokenize a single card entry without the CVV so that it can be stored in a
wallet. It is similar to “One-Time Token Request (000)”.

The Multi-Use Token request can use the PurchaseToken without consuming the purchase token.
Simply provide the PurchaseToken along with the request, excluding the User and Password fields, to
retrieve the merchant information.

The data elements for this request type are as follows:

PaymentAccountNumber

1 | ExpirationDate

2 | TrackData

Track

MSRKey

SecureFormat

BDKSlot

Trackl

Track2

EncryptionID

O | PurchaseToken

string

string

string

string

string

numeric

string

string

string

GUID

13-16

7

36

Credit card number. Required for keyed transactions.

Credit card’s expiration date. Supported formats are: MMYY,
MMYYYY, MM/YY, and MM/YYYY. Required for keyed
transactions.

The track 1 data from the credit card. Required for swiped
transactions.

Alternate element “Track” may also be used for this item.

When present, indicates that Hardware Encryption is being used
and provides the MagStripeReader’s key for decryption.

When present, indicates the format to use for decrypting the
track data.

When present, indicates the Base Derived Key slot to use as an
override for Hardware Decryption.

Overrides TrackData / Track fields. Validated against acceptable
characters in card swipe.

Overrides TrackData / Track fields. Validated against acceptable
characters in card swipe.

The encryption ID identifying the type of encryption used on the
sensitive card holder data. See 2.2.4 Generate Encryption Key
Request.

Provided by the AcquirePurchaseToken method. Used in place of
User and Password in the base response.

The parameters marked with a “1” are co-dependent. If one of these parameters is used, all of the co-
dependent parameters must be used. The parameters marked with a “2” are co-dependent. If one of
these parameters is used, all of the co-dependent parameters must be used. Etc.

QBridgePay

17

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requ estHeader>
<Clientldentifier></Clientldentifier>
<Transaction|D></Transaction|D>
<RequestType>001</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>
<PaymentAccountNumber></PaymentAccountNumber>
<ExpirationDate></ExpirationDate>
<TrackData></TrackData>
<Trackl></Trackl>
<Track2></Track2>
<MSRKey></MSRKey>
<SecureFormat></SecureFormat>
<BDKSlot></BDKSlot>
<EncryptionID></EncryptionID>
<PurchaseToken></PurchaseToken>
</requestMess age>
</requestHeader>

QBridgePay

2.2.2.1. Response

The response message is included in the GetTokenelement and returns the following data elements:

I T e

‘ R ‘ Token numeric ‘ The token to be used for authorization.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<GetToken>
<Transaction|D></Transaction|D>
<RequestType>001</RequestType>
<ResponseCode>00000</ResponseCode>
<responseMessage>
<Token></Token>
</responseMessage>
</GetToken>

QBridgePay 1

2.2.3. Multi-Use Token Security Code (Request 002)

Use the multi-use token security code request to attach a card security code to a payment token so that
BridgePay can send the card security code value for authorization.

The data elements for this request type are as follows:

Token numeric Token value returned previously by a “001” request.
R | SecurityCode string 3-4 CVV / CVV2 value (3 or 4 characters long).
EncryptionID string The encryption ID identifying the type of encryption used on the
sensitive card holder data. See 2.2.4 Generate Encryption Key
Request.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID></Transaction|D>
<RequestType>002</RequestType>
<RequestDate Time></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>
<Token></Token>
<SecurityCode></SecurityCode>
<Encryption|D></EncryptionID>
</requestMessage>
</requestHeader>

QBridgePay 20

2.2.3.1. Response

The response message is included in the WalletSecurityCodelement and returns only the base
response data elements.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<WalletSecurityCode>
<TransactionID></Transaction|D>
<RequestType>002</RequestType>
<ResponseCode>00000¢ResponseCode>
<responseMessage />
</WalletSecurityCode>

QBridgePay

21

2.2.4. Generate Encryption Key (Request 003)

If enabled in the Client Identifier provided by BridgePay, you can generate an encryption key to use for
encrypting sensitive data before sending the data to BridgeComm. This is an extra layer of encryption
that is not necessary for PCl requirements since all communications are handled via Secure Socket
Layer. However, if you are building a web site that may need to store the data momentarily in a form,
you may desire to encrypt the data for security purposes before transmitting it.

I This message requires no additional parameters from the base request.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier>< [Clientldentifier>

<TransactionID></Transaction|D>
<RequestType>003</RequestType>
<RequestDate Time></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage />

</requestHeader>

QBridgePay

22

2.2.4.1. Response

The response message is included in the EncryptionKeylement and returns the following
responseMessage parameters:

Algorithm string The encryption algorithm used. BridgeComm supports 2048 bit
RSA. Valid value is RSA.

CreateDate DateTime Date the public key was created in YYYY/MM/DD HH:MM:SS.SSS
format.
ID numeric The encryption ID used for the request messages with encrypted

sensitive cardholder data.

KeySize numeric The size of the public key in bits. BridgeComm supports 2048 bit
RSA. Valid value is 2048.

PublicKey string The public key to use for encrypting sensitive cardholder data
elements.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<EncryptionKey >
<TransactionID></Transaction|D>
<RequestType>003</RequestType >
<ResponseCode></ResponseCode>
<responseMessage>
<Algorithm></Algorithm>
<CreationDate></CreationDate>
<ID></ID>
<KeySize></KeySize>
<PublicKey></PublicKey>
</responseMessage >
</ EncryptionKey >

QBridgePay 23

2.2.5. Authorization (Request 004)

Use the authorization request to initiate a single transaction request. Please note at the time of this
writing Level llkransactions are only Valid for TSYS and First Data Nashville.

I This message may require additional data required for merchant lookup. See section 1.7 for
more information.

The data elements for this request type are as follows:

MerchantCode numeric Provided by MyBridgePay at the time of boarding. The element is
necessary unless the client is using a different merchant lookup
solution (See Section 1.7)

MerchantAccountCode numeric Provided by MyBridgePay at the time of boarding. The element is
necessary unless the client is using a different merchant lookup
solution (See Section 1.7)

O | PurchaseToken GUID 36 Provided by the AcquirePurchaseToken method. Used in place of
User and Password in the base response.

1 | PaymentAccountNumber numeric 13-19 When present, must follow general Credit Card conventions.
Supports MC, VI, AX, and DI. Required if track data not present.

Token Numeric 22 When present, represents the tokenized card number received
from a token request. This is used in place of the
PaymentAccountNumber.
O | WalletPaymentMethodID Guid 36 This is Wallet Payment Method ID provided by the Wallet API for

the payment method. When using this field, no other payment
identifiers are necessary (i.e. PaymentAccountNumber, Track,
BankAccountNum, etc).

1 | ExpirationDate string 7 Expiration date of the card. If present, must follow one of these
formats: MMYY, MM/YY, MMYYYY, MM/YYYY. Required if track
data not present.

1 | SecurityCode numeric 3-4 When present, must be 3 or 4 digits long CVV / CVV2 of the card.
Required if track data not present.

R | Amount integer 8 The amount requested for authorization. Processed as implied
decimal. $1.25 would be represented as 125.

2 | TrackData string When present, can contain alphanumeric characters and spaces,
or Track periods, slashes (/), percent symbols (%), caret symbols (),
question marks (?), semicolons (;), equality symbols (=) or
hyphens (-). Can use hardware encryption. Can be called Track or
TrackData in the request.

EncryptionID string The encryption ID identifying the type of encryption used on the
sensitive card holder data. See 2.2.4 Generate Encryption Key
Request.

MSRKey string 50 When present, indicates that Hardware Encryption is being used

and provides the MagStripeReader’s key for decryption.

SecureFormat string 50 When present, indicates the format to use for decrypting the
track data. Possible values: MagneSafeV1, MagneSafeV2,
SecureMag and SecureMagV?2.

BDKSlot numeric 2 When present, indicates the Base Derived Key slot to use as an
override for Hardware Decryption.

QBridgePay 24

Trackl string
Track2 string
R | TransactionType string
R | TransindustryType string
R | TransCatCode String
O | VoiceAuthCode String
O | PartialAuthorization String
SwipeResult future Use
PINBlock future Use
PINKey future Use
BankAccountNum numeric
RoutingNum numeric
AcctType string
InvoiceNum string
PONum string
CustomerAccountCode string
PaymentType string
AccountHolderName string
HolderType string
FeeAmount integer

11

15

10

24

24

24

60

150

Overrides TrackData / Track fields. Validated against acceptable
characters in card swipe. Can use hardware encryption.

Overrides TrackData / Track fields. Validated against acceptable
characters in card swipe. Can use hardware encryption.

Can contain letters and hyphens. Possible values: sale sale-auth,
credit, credit-auth, increment, saleinfo credit-info

Must either match a 2-letter industry type for credit cards or a 3-
letter SEC code for ACH transactions. All caps.

Credit Card Supported values are: RE (Retail), RS (Restaurant), EC
(eCommerce), DM (Direct Marketing), LD (Lodging) and CR (Car
Rental). HC is also supported for HealthCare, however internally
transactions with industry type HC are converted to Retail (RE)
transactions. ACH Supported values are: CCD (Corporate Credit or
Debit), PPD (Prearranged Payment and Deposit Entry), POP (Point
Purchase Entry), TEL (Telephone Initiated Entry), WEB (Internet
Initiated Entry), C21 (Check 21)

All caps. Supported values are: B (BillPayment), R (Recurring), |
(Installment), H (Healthcare).

Authorization Code for Voice Authorizations only. If authorization
was achieved outside of the network (by phone or other means)
you may send it through this data element to utilize the existing
authorization instead of acquiring a new authorization.

Must contain the literal true or the literal false. Setting this field
to true indicates that a partial authorization is acceptable for this
transaction. The default, if this element is not present, is false.

Future use.
Future use.
Future use.

Must contain at least one number. The bank account number for
ACH transactions.

Can contain up to 10 numbers. The routing number for ACH
transactions.

Single character, must match pre-defined types: R (Credit Card &
Branded Debit Cards), D (Unbranded Debit Cards), S (Bank
Account Savings), C (Bank Account Checking), F (EBT Food Stamp),
H (EBT Cash Benefit), G (Gift Card), L (Fleet), K (Check), A (Cash)

Alphanumeric and dashes accepted. User supplied data.
Alphanumeric and dashes accepted. User supplied data.
Alphanumeric and dashes accepted. User supplied data.
Alphanumeric, dashes and spaces accepted. User supplied data.

Any upper or lower case letter, hyphens, and spaces are allowed.
Account Holder’s Name.

Single character, either P (Personal account) or O (Organization
account).

Processed as implied decimal. $1.25 would be represented as
125. Additional Fee Amount.

QBridgePay

25

TipAmount integer Processed as implied decimal. $1.25 would be represented as
125. Additional Tip Amount.

AccountStreet string 128 Can contain alphanumerics, spaces, hyphens, periods and slashes.
Street on the account

AccountZip string 10 Postal Code on the Payment Method Account. Accepted formats
are Canadian, UK and US (5 and 9 digit variation) postal codes.
Alpha characters must be all upper-case.

AccountPhone String 20 Billing phone number. Numerics only. No special characters
allowed.
O | Contractld numeric 12 A valid BridgePay Recurring Billing System Contract Id. Provides a

way to tie a transaction to a contract defined in BridgePay’s
Recurring Billing System.

TaxRate integer 5 Processed as implied decimal. $1.25 would be represented as
125. REQUIRED FOR LEVEL II.

TaxAmount integer 8 Processed as implied decimal. 5.5% would be represented as 550.
Additional Tax Amount. REQUIRED FOR LEVEL /11l

TaxIndicator string 1 P (Provided), N (Not Provided), or E (Exempt). REQUIRED FOR
LEVEL /111,

ShipToName string 100 Shipping address name. REQUIRED FOR LEVEL II/IIl.

ShipToStreet string 128 Shipping address street. REQUIRED FOR LEVEL II/Il1.

ShipToCity string 50 Shipping address city. REQUIRED FOR LEVEL II/1Il.

ShipToState String 2 Shipping address state. REQUIRED FOR LEVEL II/IIl.

ShipToZip string 15 Shipping address postal code. Accepted formats are Canadian, UK

and US (5 and 9 digit variation) postal codes. Alpha characters
must be all upper-case. REQUIRED FOR LEVEL II/IIl.

ShipToCountryCode string 2 Shipping address country code. REQUIRED FOR LEVEL II/IlI. ISO
3166-1 alpha-2 codes.

ShippingOriginZip string 10 Postal code of the origin of the shipment. Accepted formats are
Canadian, UK and US (5 and 9 digit variation) postal codes. Alpha
characters must be all upper-case. REQUIRED FOR LEVEL III.

DiscountAmount integer 8 Processed as implied decimal. $1.25 would be represented as
125. Additional discount amount. REQUIRED FOR LEVEL IlI.

ShippingAmount Integer 8 Processed as implied decimal. $1.25 would be represented as
125. Additional shipping amount. REQUIRED FOR LEVEL III.

DutyAmount Integer 8 Processed as implied decimal. $1.25 would be represented as
125. Additional Duty Amount. REQUIRED FOR LEVEL III.

TaxInvoiceCode String 15 Must be at least 1 and up to 15 characters. When separate VAT
invoice is produced within the context of the order, unique
identifier of this invoice. REQUIRED FOR LEVEL III.

LocalTaxAmount Integer 8 Processed as implied decimal. $1.25 would be represented as
125. Additional Local Tax Amount. REQUIRED FOR LEVEL IIl.

LocalTaxIndicator string 1 P (Provided), N (Not Provided), or E (Exempt). REQUIRED FOR
LEVEL Il
NationalTaxAmount integer 8 Processed as implied decimal. $1.25 would be represented as

125. Additional National Tax Amount. REQUIRED FOR LEVEL IlI.

NationalTaxIndicator string 1 P (Provided), N (Not Provided), or E (Exempt). REQUIRED FOR
LEVEL III.

QBridgePay 26

OrderCode string Unique identifier assigned to the order associated with this
transaction in submitter's/merchant's front-end/ inventory
system. REQUIRED FOR LEVEL Il

OrderDate string 8 Date in format YYYYMMDD. Date when the order associated with
the transaction was placed. REQUIRED FOR LEVEL IIl.

CommodityCode string 4 Acquirer designated standardized code that classifies the group of
items associated with this order/transaction. REQUIRED FOR
LEVEL 111

CustomerAccountTaxID string 13 VAT registration number of the customer responsible for this

transaction. REQUIRED FOR LEVEL III.

ChecklmageFront string 64000 Base64 text encoded version of the TIFF image of the front of the
check being processed.

CheckimageBack string 64000 Base64 text encoded version of the TIFF image of the back of the
check being processed.

MICR string 255 MICR data scanned by a check reader.

EMVTags string 255 Combined EMV tags presented in TLV format.

EntryModeType string 2 Method of entering the transaction. Possible values: MX =

Manual with Signature, SX= Swipe/Scan with Signature, HX= Chip
with Signature, CX= Contactless with Signature, SP= Swipe with
PIN, HP= Chip with PIN

EntryMediumType string 2 The medium type used to initiate the transaction. Possible
values: NP= Not Present, MC= Magnetic Card, CC= Chip Card, CH
= Check

EntryPINModeType string 1 Indicates whether the input source supports PIN entry. Possible

values: X=unknown, S=supported, U= Unsupported, N =
Inoperative, O = Offline.

TerminalCapabilities string 255 Describes the terminal’s capabilities. Can include any
combination of the following tags separated by pipe characters:
unknown, unused, manual, stripe, barcode, grcode, ocr, irc,
contactless, signature, rfidmicr or mobile.

ItemCount numeric 12 The number of items included in the Item Collection. REQUIRED
FOR LEVEL IlI.

Items collection n/a Multiple based on contents Individual items. REQUIRED FOR
LEVEL 111,

The “Items” collection is a repeatable tag that consists of the following group of elements:

R | ItemCode String Unique identifier assigned to this item in the submitter’s inventory
system.

R | ltemCommodityCode String 12 Acquirer designated standardized code that classifies this item.

R | ItemDescription String 35 Short description of the item.

R | ItemQuantity decimal 12 Quantity of item units purchased as part of this transaction. Up to

4 decimal places.

R | ltemUnitCostAmt integer 12 Processed as implied decimal. $1.25 would be represented as 125.
Cost of a single unit of the item.

QBridgePay 27

ItemUnitMeasure string Unit of measure used to quantify the items purchased/refunded
(e.g. kg, Ib., inch).

R | ltemTaxRate integer 12 Processed as implied decimal. 5.5% would be represented as 550.
Rate of the tax (if any) charged on this item.

R | ItemTaxAmount Integer 8 Processed as implied decimal. $1.25 would be represented as 125.
Amount of tax charged for this item.

R | ItemTaxIndicator string 1 P (Provided), N (Not provided), or E (Exempt).

R | ItemTaxCode string 4 Acquirer designated value classifying the tax that was charged for
this item.

R | ItemDiscountRate Integer 8 Processed as implied decimal. 5.5% would be represented as 550.

Rate of discount (if any) that was applied to this item.

R | ItemDiscountAmount Integer 8 Processed as implied decimal. $1.25 would be represented as 125.
Total amount of discount applied to this item.

R | ItemTotalAmount Integer 8 Processed as implied decimal. $1.25 would be represented as 125.
Total amount paid for the item (including tax and discount).

R | ItemlsCredit string 1 True (Item is being returned), False (Default if not passed - Item is
being purchased).

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>

<Clientldentifier></Clientldentifier>

<TransactionID></Transaction|D>

<RequestType>004</RequestType>

<RequestDate Time></RequestDate Time>

<User></User >

<Password></Password>

<requestMessage>
<MerchantCode></MerchantCode>
<MerchantAccountCode></MerchantAccountCode>
<PurchaseToken></PurchaseToken >
<PaymentAccountNumber></PaymentAccountNumber>
<WalletPaymentMethodID></WalletPaymentMethodID>
<ExpirationDate></ExpirationDate>
<SecurityCode></SecurityCode>
<Amount></Amount> <TrackData></TrackData>
<Encryption|D></EncryptionID>
<TransactionType></TransactionType>
<TransIndustryType></TransIndustryType>
<TransCatCode></TransCatCode>
<VoiceAuthCode></VoiceAuthCode>
<PartialAuthorization></PartialAuthorization>
<MSRKey></MSRKey>
<SwipeResult></SwipeResult>
<PINBlock></PINBlock>
<Pl NKey></Pl NKey>
<BankAccountNum></BankAccountNum>
<RoutingNum></RoutingNum>
<AcctType></Acct Type>
<InvoiceNum></InvoiceNum>
<PONum></PONum>
<CustomerAccountCode></CustomerAccountCode>
<AccountHolderName></AccountHolderName>
<HolderType></HolderType>
<FeeAmount></FeeAmount>
<TipAmount></TipAmount>

QBridgePay 28

<AccountStreet></AccountStreet>
<AccountZip></AccountZip>
<AccountPhone></AccountPhone >
<Contractld></Contractld>
<TaxRate></TaxRate>
<TaxAmount></TaxAmount>
<TaxIndicator></TaxIndicator>
<ShipToName></ShipToName>
<ShipToStreet></ShipToStreet>
<ShipToCity></ ShipToCity>
<ShipToState></ShipToState>
<ShipToZip></ShipToZip>
<ShipToCountryCode></ShipToCountryCode>
<ShippingOriginZip></ShippingOriginZip>
<DiscountAmount></DiscountAmount>
<ShippingAmount></ShippingAmount>
<DutyAmount></DutyAmount>
<TaxInvoiceCode></TaxInvoiceCode>
<LocalTaxAmount></LocalTaxAmount>
<LocalTaxIndicator></LocalTaxIndicator>
<NationalTaxAmount></NationalTaxAmount>
<NationalTaxIndicator></NationalTaxIndicator>
<OrderCode></OrderCode>
<OrderDate></OrderDate>
<CommodityCode></CommodityCode>
<CustomerAccountTaxID></CustomerAccountTaxID>
<ChecklmageFront></ChecklmageFront>
<ChecklmageBack></ChecklmageBack>
<MICR></MICR>
<EMVTags></EMVTags>
<EntryModeType></EntryModeType>
<EntryMediumType></EntryMediu mType>
<EntryPINModeType></EntryPINModeType>
<TerminalCapabilities></TerminalCapabilities>
<ltemCount>2</ltemCount>
<ltem>
<ltemCode></ItemCode>
<ltemCommodityCode></ltemCommodityCode>
<ltemDescription></ltemDescription>
<ltemQuantity>< /ltemQuantity>
<ltemUnitCostAmt></ltemUnitCostAmt>
<ltemUnitMeasure></ltemUnitMeasure>
<ltemTaxAmount></ltemTaxAmount>
<ltemTaxRate></ltemTaxRate>
<ItemTaxIndicator></ltemTaxIndicator>
<ltemTaxCode></ltemTaxCode>
<ltemDiscountRate></It = emDiscountRate>
<ItemTotalAmount></ltemTotalAmount>
<ltemlsCredit></ItemIsCredit>
</ltem>
<Item>
<ltemCode></ItemCode>
<ltemCommodityCode></ltemCommodityCode>
<ltemDescription></ltemDescription>
<ltemQuantity></ltemQuantity>
<ltemUnitCostAmt></ltemUnitCostAmt>
<ltemUnitMeasure></ltemUnitMeasure>
<ltemTaxAmount></ltemTaxAmount>
<ItemTaxRate></ltemTaxRate>
<ItemTaxIndicator></ltemTaxIndicator>
<ItemTaxCode></ltemTaxCode>
<ItemDiscountRate></ltemDiscountRate>
<ltemTotalAmount></ItemTotalAmount>
<ItemlIsCredit></ItemIsCredit>

QBridgePay 29

</Item>
</requestMessage>
</requestHeader>

JSON Request Layout

{ "request ":{
"dataElements": [
{ "namé: "Clientldentifier" , "value ": "™ }
{ "namé: "TransactionID" , "value ": "™ 1},
{ "namé: "RequestType" , "value ": "™ 1},
{ "namé: "RequestDateTime" , "value ": "™ 1},
{ "namé: "User", "value ": ™ 1},
{ "namé: "Password", "value": "™ 1},
{ "namé: "MerchantCode", "value ": "™ 1},
{ "namé: "MerchantAccountCode ", "value ": "™ },
{ "namé: "PurchaseToken", "value": "™ 1},
{ "namé: "PaymentAccountNumber", "value ": "™ 1},
{ "namé: "WalletPaymentMethodID ", "value ": ™ },
{ "namé: "ExpirationDate" , "value": "™ 1},
{ "namé: "SecurityCode" , "value ": "™ 1},
{ "namé: "Amount", "value ": "™ 1},
{ "namé: "TrackData" , "value ": "™ 1},
{ "namé: "EncryptionID "value ": "™ 1},
{ "namé: "TransactionType" , "value ": "™ 1},
{ "namé: "TransIndustryType" , "value ": "™ 1},
{ "namé: "TransCatCode" , "value ": "™ 1},
{ "namé: "VoiceAuthCode", "value ": "™ 1},
{ "namé: "MSRKey, "value ": " },
{ "namé: "SwipeResult" , "value ": "™ },
{ "namé: "PINBlock" , "value": ™ },
{ "namé: "PINKey", "value": "™ },
{ "namé: "BankAccountNum", "value ": "™ 1},
{ "namé: "RoutingNum",6 "value ": "™ },
{ "namé: "AcctType" , "value": ™ 1},

{ "namé: "InvoiceNum" , "value ": "™ },

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

"name: "PONum; "value ": 13

"name': "CustomerAccountCode", "value ": ™ 1},
"name': "AccountHolderName" , "value ": ™ 1},
"name': "HolderType" , "value ": ™ 1},

"name': "FeeAmount", "value ": 1
"name: "TipAmount" , “"value ": "™ 1},
"name': "AccountStreet” , "value ": "™ 1},
"name: "AccountZip" , "value ": "™ },
"name : "AccountPhone ", "value": "™ }
"name': "Contractld ", "value ": "™ 1},
"name': "TaxRate" , "value ": "™ 1},

"name': "TaxAmount", "value ": "™ },

"name': "TaxIndicator" , "value": "™ }
"name': "ShipToName", "value ": "™ 1},
"name': "ShipToStreet" , "value": "™ 1}
"namé: "ShipToCity" , "value": ™ 1},
"name': "ShipToState" , "value ": ™ 1},
"namé': "ShipTozip" , "value": ™ 1},

"name': "ShipToCountryCode" , "value ": ™ 1},
"namée': "ShippingOriginZip" , "value": "™ },
"name': "DiscountAmount" , "value ": "™ 1},
"namé: "ShippingAmount" , "value ": "™ },
"name': "DutyAmount”, "value ": "™ },
"name': "TaxlnvoiceCode" , "value ": ™ 1},
"name': "LocalTaxAmount" , "value ": "™ 1},
"name': "LocalTaxIndicator" , "value ": }
"name': "NationalTaxAmount" , "value ": ™ },

QBridgePay

"namée': "NationalTaxIndicator" , "value ": "™ 1},
"name': "OrderCode", "value": "™ 1},

"name': "OrderDate" , "value ": "™ 1},

"name: "CommodityCode", "value ": "™ 1},

"namée': "CustomerAccountTaxID" , "value ": ™ },
"name: "ChecklmageFront", "value": "2" },

"name': "ChecklmageBacK', "value ": "2" },

"name': "MICR, "value ": "2" },

"name': "EMVTag$, "value ": "2" },

"name': "EntryModeType", "value ": "2" },

"name': "EntryMediumType", "value": "2" },

"name': "EntryPINModeType", "value ": "2" },

"name': "TerminalCapabilties ", "value ": "2" },
"name': "ltemCount" , "value": "2" },

"name': "ltem s":[

{ "dataElements ":

"name': "ltemCode" , "value ": "™ 1},
"name': "ltemCommodityCode" , "value ": "™ },
"name': "ltemDescription” , "value ": "™ },
"namé: "ltemQuantity" , "value ": "™ },
"name': "ltemUnitCostAmt" , "value ": ™ }
"name': "ltemUnitMeasure" , "value ": "™ }
"name': "ltemTaxAmount" , "value ": "™ 1},
"name': "ltemTaxRate" , "value ": "™ 1},
"name: ‘"ltemTaxIndicator" , "value": ™ },
"name: "ltemTaxCode" , "value ": "™ },
"name: "ltemDiscountRate" , "value": "™ },
"name: ‘"ltemTotalAmount" , "value ": ™ 1},
"name: "ltemlsCredit® , "value ": ™ }

L R R Lo Rann Rae Rt Rate Kate Raon Ratn Rara e Wt ot

L Lo Ren Rt e N arn Rane Rare Ron Rern Rate Rasn Xatn)

{ "dataElements ": [

{ "namé: "ltemCode" , "value": "™ },
{ "namé: "ltemCommodityCode", "value ": "™ 1},
{ "namé: "ltemDescription" , "value ": ™ 1},
{ "namé: "ltemQuantity" , "value ": "™ },
{ "namé: "ltemUnitCostAmt" , "value ": ™ 1},
{ "namé: "ltemUnitMeasure" , "value ": ™ 1},
{ "namé: "ltemTaxAmount" , "value ": "™ 1},
{ "namé: "ltemTaxRate" , "value ": "™ 1},
{ "namé: "ltemTaxIndicator® , "value": "™ 1},
{ "namé: "ltemTaxCode" , "value ": "™ 1},
{ "namé: “ltemDiscountRate" , "value": "™ },
{ "namé: "ltemTotalAmount" , "value ": ™ },
{ "namé: “ltemisCredit® , "value ": ™ }
}H
}H

H}

QBridgePay

2.2.5.1. Response

The response message is included in the Auth element and returns the following data elements:

Token string Either the token submitted with the original authorization
request or a tokenized version of the submitted payment
account number if no token was provided in the request.

AuthorizationCode String 50 The transaction authorization code returned from the
processor.

ReferenceNumber string For future use.

GatewayResult string Echo of the ResponseCode.

AuthorizedAmount integer 8 Implied decimal, amount of the charge that was authorized.

OriginalAmount integer 8 Implied decimal, amount that was requested for authorization.

ExpirationDate String 6 Echo back of the expiration date.

AVSResult String Unipay AVS Match Result Code.

AVSMessage String Unipay AVS Match Result Message.

StreetMatchMessage String For future use.

ZipMatchMessage String For future use.

CVResult String Unipay CVV/CVV2 Match Result Code.

CVMessage String Unipay CVV/CVV2 Match Result Message.

IsCommercialCard Boolean For future use.

GatewayTransID Integer Transaction ID from the gateway (used as Reference Number
for Voids / Refunds).

GatewayMessage String Message from the gateway.

InternalMessage String Provides more information from the gateway and processor

regarding the results of the transaction request.

Balance Integer For future use.
CashBackAmount Integer 8 For future use.
TransactionCode String Echo back of the TransactionCode.
CardType String For future use.
RemainingAmount integer 8 For future use.
TransactionDate string

IsoCountryCode string

IsoCurrencyCode string

IsoTransactionDate string

IsoRequestDate string

NetworkReferenceNumber string

NetworkTerminalld string

MaskedPan string

ResponseTypeDescription string

MerchantCategoryCode string

QBridgePay 32

* | ReceiptTagData string Returned tag data for generating the receipt.

* | IssuerTagData string Returned tag data from the issuer.

* ReceiptTagData and IssuerTagData are only returned when the authorization is processed as an EMV transaction.

XMLResponse Layout

<?xml version="1.0" encoding="utf -16"?>
<Auth>

<Transaction|D></Transaction|D>

<RequestType>004</RequestType>

<ResponseCode>00000</ResponseCode>

<ResponseDescription></ResponseDescription>

<responseMessage>
<Token></Token>
<AuthorizationCode></AuthorizationCode>
<ReferenceNumber></ReferenceNumber>
<GatwayResult></GatewayResult>
<AuthorizedAmount></AuthorizedAmount>
<OriginalAmount></OriginalAmount>
<ExpirationDate></ExpirationDate>
<AVSMessage></AVSMessage>
<AVResult></AVSResult>
<StreetMatchMessage></StreetMatchMessage>
<ZipMatchMessage></ZipMatchMessage>
<CVMessage></CVMessage>
<CVResult></CVResult>
<IsCommercialCard></IsCommercialCard>
<GatewayTransID></GatewayTransI|D>
<GatewayMessage></GatewayMssage>
<InternalMessage ></InternalMessage >
<Balance></Balance>
<CashBackAmount></CashBackAmount>
<TransactionCode></TransactionCode>
<TransactionDate></TransactionDate>
<IsoCountryCode ></IsoCountryCode >
<IsoCurrencyCode ></IsoCurrencyCode >
<IsoTransactionDate ></lsoTransactionDate
<IsoRequestDate ></lIsoRequestDate >

<NetworkReferenceNumber ></ NetworkReferenceNumber >

<NetworkMerchantld ></NetworkMerchantld >
<NetworkTerminalld ></NetworkTerminalld >
<MaskedParr</ MaskedPar»

<MerchantCategoryCode ></MerchantCategoryCode >
<ResponseTypeDescription ></ResponseTypeDescription >

<CardType></CardType>
<RemainingAmount></RemainingAmount>
<ReceiptTagData></ReceiptTagData>
<IssuerTagData></IssuerTagData>
</responseMessage>
</Aut h>

JSON Response Layout

"Transaction|D" : ,
"RequestType" : "004",
"ResponseCode" : "0000",
"ResponseDescription” My
"Token" : ™,
"AuthorizationCode" I

QBridgePay

33

"ReferenceNumber" : ,
"GatwayResult" : "™,
"AuthorizedAmount" ,
"OriginalAmount" ,
"ExpirationDate" : ,
"AVSMessage" : "™,
"AVSResult" : "™,
"StreetMatchMessage" ,
"ZipMatchMessage" : ,
"CVMessage" : "™,
"CVResult" : ™,
"IsCommercialCard” : ,
"GatewayTransID" @ ™,
"GatewayMessage" @ "™,
"Internal Message" : ",
"Balance" : "™,
"CashBackAmount" : ™,

"TransactionCode" ,
"TransactionDate" N
"lsoCountryCode " : ™,
"lsoCurrencyCode " : "™,
"lsoTransactionDate " : "™,
"lsoRequestDate " : ™,

" NetworkReferenceNumber " : ™ ,
"MerchantCategoryCode " : ™,

" NetworkMerchantld " : ™,

" NetworkTerminalld * : ™
"MaskedPart : "™,

" ResponseTypeDescription
"CardType"
"RemainingAmount" : "™,
"ReceiptTagData " : ™

"lssuerTagData " : ™

}

QBridgePay

2.2.6. BIN Lookup (Request 005)

Use the BIN lookup request to determine the card brand of the specified BIN.

The data elements for this request type are as follows:

numeric The 6 to 11-digit BIN number to be looked up. As this is only a BIN
number, it need not be encrypted and does not support being
encrypted.
XML Request Layout
<?xml version="1.0" encoding="utf -16"?>

<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID></Transaction|D>
<RequestType>005</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>

<BIN></BIN>

</requestMessage>

</requestHeader>

QBridgePay 35

2.2.6.1. Response

The response message is included in the BINLookupelement and returns the following data elements:

R | Cardldentifier string The card type for the submitted BIN.
Response Layout

<?xml version="1.0" encoding="utf -16"?>

<BINLookup>
<TransactionID></Transaction|D>
<RequestType>005</RequestType>
<ResponseCodex0000</ResponseCode>
<responseMessage>

<Cardldentifier></Cardldentifier>

</responseMessage>

</BINLookup>

QBridgePay 36

2.2.7. Check Password Expiration (Request 006)

Use the check password expiration request to determine the amount of time remaining before the
user’s password expires.

| This message requires no additional parameters from the base request.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>

<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID></Transaction|D>
<Request Type>006</RequestType>
<RequestDateTime></RequestDateTime>
<User></User>
<Password></Password>
<requestMessage />

</requestHeader>

QBridgePay

37

2.2.7.1. Response

The response message is included in the CheckPasswordExpiratioglement and returns the following
data elements:

R | SecondsRemaining numeric The number of seconds remaining until the user’s current
password expires. If the account is a “service account”, the value
returned will be: 7776000. The maximum value that can be
returned is 7776000.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>

<CheckPasswordExpiration>
<TransactionID></Transaction|D>
<RequestType>006</RequestType>
<ResponseCode>00000</ResponseCode>

<ResponseDescription>Successful Request</ResponseDescription>
<responseMessage>

<SecondsRemaining>2548139</SecondsRemaining>
</responseMessage>

</CheckPasswordExpiration>

QBridgePay 38

2.2.8. Change Password (Request 007)

Use the change password request to update the user’s password.

Passwords must contain a minimum of 6 characters, with at least one upper case letter, one lower case
letter, and one numeric character.

The data elements for this request type are as follows:

NewPassword string The new password for the user.
R | ConfirmPassword string The re-entered new password for the user, to confirm the new
value.

Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID>< /TransactionID>
<RequestType>007</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>
<NewPassword></NewPassword>
<ConfirmPassword></ConfirmPassword>
</requestMessage>
</requestHeader>

QBridgePay 39

2.2.8.1. Response
The response message is included in the UpdatePasswordvith no extra data elements.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<UpdatePassword>
<TransactionID></Transaction|D>
<RequestType>007</RequestType>
<ResponseCode®0000</ResponseCode>
</UpdatePassword>

QBridgePay

40

2.2.9. Get Merchant Info (Request 011)

Use the merchant info request to retrieve the default merchant information for your credentials.

The Get Merchant Info request can use the PurchaseToken without consuming the purchase token.
Simply provide the PurchaseToken along with the request, excluding the User and Password fields, to
retrieve the merchant information.

The data elements for this request type are as follows:

PurchaseToken GUID Provided by the AcquirePurchaseToken method. Used in place of
User and Password in the base response.

Request Layout

<?xml version="1.0" encoding="utf -16"?>

<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID></Tr ansaction|D>
<RequestType>011</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>

<PurchaseToken></PurchaseToken>

</requestMessage>

</requestHeader>

QBridgePay 41

2.2.9.1. Response

The response message is included in the GetMerchantinfo element and returns the following data

elements:

MerchantCode integer
R | MerchantAccountCode integer 12
R | MerchantName string 50
R | GatewayResults string 5
R | GatewayTransID integer 12
R | GatewayMessage string 255

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>

<GetMerchantinfo >
<TransactionID></Transaction|D>
<RequestType>011</RequestType>

<ResponseCode®0000</ResponseCode>

<responseMessage>

<MerchantCode></MerchantCode>

The default merchant code assigned to the user.

The default merchant account code assigned to the user.
The name assigned to the merchant account.

Results from the Gateway (5 digit code).

Transaction ID for the request.

Message from the Gateway regarding this request.

<MerchantAccou ntCode></MerchantAccountCode>
<MerchantName></MerchantName>
<GatewayResults></GatewayResults>
<GatewayTransID></GatewayTransID>
<GatewayMessage></GatewayMessage>

</r esponseMessage>
</ GetMerchantinfo >

QBridgePay

42

2.2.10. Void/Refund (Request 012)

Use the void/refund request to issue a void against an unsettled authorization or a refund against a

settled transaction.

| This message may require additional data required for merchant lookup. See section 1.7 for

more information.

The Void/Refund request can use a previously used PurchaseToken for one void/refund operation only.
Simply provide the PurchaseToken along with the request, excluding the User and Password fields, to

retrieve the merchant information.

The data elements for this request type are as follows:

MerchantCode numeric
MerchantAccountCode numeric
R | Amount integer 8
R | ReferenceNumber integer 12
R | TransactionType string 6
R | TransactionCode string
O | PurchaseToken GUID 36

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>

<requestHeade r>
<Clientldentifier></Clientldentifier>
<TransactionID></TransactionID>
<RequestType>012</RequestType>

<RequestDateTime></RequestDate Time>

<User></User>
<Password></Password>
<requestMessage>

<MerchantCode></MerchantCode>

Provided by MyBridgePay at the time of boarding. The element is
necessary unless the client is using a different merchant lookup
solution (See Section 1.7)

Provided by MyBridgePay at the time of boarding. The element is
necessary unless the client is using a different merchant lookup
solution (See Section 1.7)

Processed as implied decimal. $1.25 would be represented as 125.
The amount requested to be refunded / voided.

The GatewayTransld returned as a part of the response to request
004.

Can contain letters and hyphens. Must match a one of the defined
transaction types in Unipay. Should use “void” or “refund” only for
this request type.

Must match the TransactionID in the requestHeader.

Provided by the AcquirePurchaseToken method. Must be the
same Purchase Token acquired and used for an authorization or
sale. Used in place of User and Password in the base response.

<MerchantAccountCode>< /MerchantAccountCode>

<Amount></Amount>

<ReferenceNumber></ReferenceNumber>
<TransactionType></TransactionType>
<TransactionCode></TransactionCode>
<PurchaseToken></PurchaseToken>

</requestMessage>
</requestHeader>

QBridgePay

43

JSON Request Layout

{

"d ataElements": [

e e e L R Ran R

name':
name':
name':
name':
name':
name':
name':
name':
name':
name':
"name':
"name':
"name':

"Clientldentifier" , "value ": "™ }
"TransactionID" , "value ": "™ 1},
"RequestType" , "value ": ™ },
"RequestDateTime" , "value ": "™ },
"User" , "value ": "™ 1},
"Password" , "value ": "™ 1},
"MerchantCode", "value ": "™ 1},
"MerchantAccountCode ", "value ": "™ 1},
"Amount", "value ": "™ 1},
"TransactionType" , "value ": ™ },
"Trans actionCode ", "value ": "™ },
"ReferenceNumber", "value ": "™ }
"PurchaseToken", "value ": "™ }

QBridgePay

44

2.2.10.1. Response

The response message is included in the VoidRefundelement and returns the following data elements:

ReferenceNumber The reference number of the refund or of the original
authorization if this was a void.

R | TransactionCode The TransactionCode that was send with the request.

R | RemainingAmount numeric 8 Any amount of the original authorization remaining after this void
/ refund. This amount is in decimal format (i.e. $19.95 = 19.95).

R | ResponseType string Action that was performed: “Void” or “refund”.

R | MerchantAccountCode The merchant account code used to process the original
authorization and the void or refund.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<VoidRefund >
<TransactionID></Transaction|D>
<RequestType>012</RequestType>
<ResponseCode®0000</ResponseCode>
<responseMessage>
<ReferenceNumber></ReferenceNumber>
<TransactionCode></TransactionCode>
<RemainingAmount></RemainingAmount>
<ResponseType></ResponseType>
<MerchantAccountCode></MerchantAccountCode>
</responseMessage>
</ VoidRefund >

JSON Response Layout

"TransactionID " : "™,
"RequestType" : ™,

" ResponseCode" : "™,

" ReferenceNumber" : "™,
"TransactionCode " : "™,

" RemainingAmount” : ,

"ResponseType" : ,
" MerchantAccountCode " : ™"

QBridgePay 45

2.2.11. Tokenize Account (Request 013)

Use the Tokenize Account request to tokenize a bank account number for ACH transactions.

The data elements for this request type are as follows:

Must contain at least one number. The bank account number for
ACH transactions.

BankAccountNum numeric

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>

<requestHeader>
<Clientldentifier></Clientldentifier>
<Transaction|D></Transaction|D>
<RequestType>013</RequestType>
<RequestDate Time></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>

<BankAccountNum></ BankAccountNum >

</requestMessage>

</requestHeader>

QBridgePay 46

2.2.11.1. Response

The response message is included in the GetTokenelement and returns the following data elements:

I e

‘ R ‘ Token Numeric ‘ The 22-digit token to be used for authorization.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<GetToken>
<Transaction|D></Transaction|D>
<RequestType>012</RequestType>
<ResponseCode®0000</ResponseCode>
<responseMessage>
<Token></Token>
</ responseMessage>
</ GetToken>

QBridgePay 47

2.2.12. Capture (Request 019)

This request method is used to confirm a previously authorized sale. This is used for merchants that are
not setup to AutoConfirm their transactions. Transactions that are not confirmed will be voided at
settlement time.

| This message may require additional data required for merchant lookup. See section 1.7 for
more information. This message may also require additional data for lodging check-out
transactions.

The data elements for this request type are as follows:

MerchantCode numeric Provided by MyBridgePay at the time of boarding. The element is
necessary unless the client is using a different merchant lookup
solution (See Section 1.7)

MerchantAccountCode numeric Provided by MyBridgePay at the time of boarding. The element is
necessary unless the client is using a different merchant lookup
solution (See Section 1.7)

R | Amount integer 8 Processed as implied decimal. $1.25 would be represented as 125.
The amount to be confirmed. For new authorizations, can be
100% or less of the original auth amount. For previously
confirmed transactions, can be 100% of the previously confirmed
amount. For lodging transactions, can be greater or less than the
total authorized for the lodging key.

C | ReferenceNumber numeric The GatewayTransld returned as part of the auth response (004).
Conditionally Required — Not required for Lodging Transactions

R | TransactionType string Can contain letters and hyphens. Must match a one of the defined
transaction types in Unipay. Should use “capture” only for this
request type.

R | TransactionCode string Must match the TransactionID in the requestHeader

C | FolioNumber String 15 Hotel folio number. Required when capturing a lodging

transaction.

C | CheckinDate Date The date of actual or anticipated check-in. Required when
capturing a lodging transaction.

C | Token Numeric 22 When present, represents the tokenized card number received
from a token request or authorization. Required when capturing a
lodging transaction.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier>< [Clientldentifier>

<TransactionID></Transaction|D>

<RequestType>019</RequestType>

<RequestDateTime></RequestDate Time>

<User></User>

<Password></Password>

<requestMessage>
<MerchantCode><MerchantCode>
<MerchantAccountCode></MerchantAccountCode>
<Amount></Amount>
<ReferenceNumber></ReferenceNumber>

QBridgePay 48

<TransactionType></TransactionType>
<TransactionCode></TransactionCode>
<FolioNumber></FolioNumber>
<CheckinDate></CheckinDate>
<Token></Token>

</requestMessage>

</requestHeader>

QBridgePay

49

2.2.12.1. Response

The response message is included in the Captureelement and returns the following data elements:

ReferenceNumber string Provider supplied reference number.
R | GatewayResult string Echo of ResponseCode.
R | GatewayTransID string Echo of TransactionlID.
R | GatewayMessage string Echo of ResponseDescription.
R | TransactionCode string The TransactionCode that was send with the request.
R | ResponseType string Action that was performed: “capture”.
R | MerchantAccountCode string The merchant account code used to process the original

authorization and the void or refund.
XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<Capture >
<TransactionID></Transaction|D>
<RequestType>019</RequestType>
<ResponseCodex®0000</ResponseCode>
<responseMessage>
<ReferenceNumber></ReferenceNumber>
<GatewayResult></GatewayResult>
<GatewayTransID></GatewayTrans|D>
<GatewayMessage></GatewayMessage>
<TransactionCode></TransactionCode>
<ResponseType></ResponseType>
<MerchantAccountCode></MerchantAccountCode>
</responseMessage>
</ Capture >

QBridgePay >0

2.2.13. Initiate Settlement (Request 020)

This request method is used to initiate a settlement request immediately. All unsettled transactions will
be submitted to the processors for settlement.

| This message requires no specific additional parameters apart from the base request, other
than elements required for merchant lookup. See section 1.7 for more information.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID></TransactionID>
<RequestType>020</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>
<MerchantCode></Merc hantCode>
<MerchantAccountCode></MerchantAccountCode>
</requestMessage>
</requestHeader>

QBridgePay

51

2.2.13.1. Response

The response message is included in the CloseCyclelement and returns the following data elements:

CycleCode string The Batch ID for the submitted transactions.
R | GatewayResult string Echo of ResponseCode.
R | GatewayTransID string Echo of TransactionlID.
R | GatewayMessage string Echo of ResponseDescription.
R | TransactionCode string The TransactionCode that was send with the request.
R | ResponseType string Action that was performed: “closeCycle”.
R | MerchantAccountCode string The merchant account code used to process the original

transactions.
XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<CloseCycle >
<TransactionID></Transaction|D>
<RequestType>020</RequestType>
<ResponseCodex®0000</ResponseCode>
<responseMessage>
<CycleCode></CycleCode>
<GatewayResult></GatewayResult>
<GatewayTransID></GatewayTrans|D>
<GatewayMessage></GatewayMessage>
<TransactionCode></TransactionCode>
<ResponseType></ResponseType>
<MerchantAccountCode></MerchantAccountCode>
</responseMessage>
</ CloseCycle >

QBridgePay >2

2.2.14. Manage Gift Card (Request 022)

This request method is used to activate, deactivate or reactivate a gift card.

| This request type is not currently available in BridgeComm and is only provided for future

reference.

The data elements for this request type are as follows:

MerchantCode

MerchantAccountCode

1 | PaymentAccountNumber

R | Amount

MSRKey

SecureFormat

BDKSlot

2 | Track

Trackl

Track2

R | TransactionType

R | TransindustryType

EMVTags

LaneCode

numeric

numeric

numeric

integer

string

string

numeric

string

string

string

string

string

string

String

13-19

50

50

11

255
10

Provided by MyBridgePay at the time of boarding. The
element is necessary unless the client is using a
different merchant lookup solution (See Section 1.7)

Provided by MyBridgePay at the time of boarding. The
element is necessary unless the client is using a
different merchant lookup solution (See Section 1.7)

When present, must follow general Credit Card
conventions. Required if track data not present.

Amount of money, available to a customer after a card
is activated or returned upon deactivation of a card.
Processed as implied decimal. $1.25 would be
represented as 125.

When present, indicates that Hardware Encryption is being
used and provides the MagStripeReader’s key for decryption.

When present, indicates the format to use for decrypting the
track data. Possible values: MagneSafeV1, MagneSafeV2,
SecureMag and SecureMagV2.

When present, indicates the Base Derived Key slot to use as an
override for Hardware Decryption.

When present, can contain alphanumeric characters
and spaces, periods, slashes (/), percent symbols (%),
caret symbols (), question marks (?), semicolons (;),
equality symbols (=) or hyphens (-). Can use hardware
encryption.

Overrides Track field. Validated against acceptable
characters in card swipe. Can use hardware encryption.

Overrides Track field. Validated against acceptable
characters in card swipe. Can use hardware encryption.

Possible values: activate, deactivate reactivate

Must match a 2-letter industry type for credit cards. All
caps.

Supported values are: RE (Retail), RS (Restaurant), EC
(eCommerce), DM (Direct Marketing) and LD (Lodging).

Combined EMV tags presented in TLV format.

Lane number associated with the transaction (when
applicable).

QBridgePay

53

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID>< /Transaction|D>
<RequestType>020</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>
<MerchantCode></MerchantCode>
<MerchantAccountCode></MerchantAccountCode>
<PaymentAccountNumber><PaymentAccountNumber>
<Amount></Amount>
<MSRKey></MSRKey>
<SecureFormat></SecureFormat>
<BDKSlot></BDKSlot>
<Track></Track>
<Track1l></Trackl>
<Track2></Track2>
<TransactionType></TransactionType>
<TransIndustryType></TransIndustryType>
<EMVTags></EMVTags>
<LaneCode></LaneCode>
</requestMessage>
</requestHeader>

QBridgePay

2.2.14.1. Response

The response message is included in the Gift element and returns the following data elements:

Possible Values: activate, deactivate reactivate

Merchant Account Code used for card management request
Transaction Code used for card management request
Identifier in gateway

Generated gateway response message

Amount of money, left on a card and returned to customer upon
deactivation. Only present on deactivate responses.

Gateway generated response code

ResponseType string
R | MerchantAccountCode integer
R | TransactionCode string 60
R | GatewayTransld integer
R | GatewayMessage string 255
R | CashbackAmount integer 8
R | GatewayResult string 3
XML Response Layout
<?xml version="1.0" encoding="utf -16"?>
<Gift >
<TransactionID></Transaction|D>
<RequestType>022</RequestType>
<ResponseCodex®0000</ResponseCode>
<ResponseDescription>Successful Request</ResponseDescription>
<responseMessage>
<ResponseType></ResponseType>
<MerchantAccountCode></MerchantAccountCode>
<TransactionCode></TransactionCode>
<GatewayTransID></GatewayTransI|D>
<GatewayMessage></GatewayMessage>
<CashbackAmount></CashbackAmount>
<GatewayResult></GatewayResult>
</responseMessage>
</ Gift >

QBridgePay

55

2.2.15. Ping (Request 099)

Use the ping request to determine the status of the gateway.
| This message requires no additional parameters from the base request.

XML Request Layout

<?xml version="1.0" encoding="utf -16"?>

<requestHeader>
<Clientldentifier></Clientldentifier>
<TransactionID></Transaction|D>
<RequestType>099</RequestType>
<RequestDateTime></RequestDateTime>
<User></User>
<Password></Password>
<requestMessage />

</requestHeader>

QBridgePay

56

2.2.15.1. Response

The response message is included in the Pingelement with no extra data elements.

XML Response Layout

<?xml version="1.0" encoding="utf -16"?>
<Ping >
<TransactionID></Transaction|D>
<RequestType>099</RequestType>
<ResponseCode®0000</ResponseCode>
<ResponseDescription >SuccessfulRequest </ ResponseDescription >
</ Ping >

QBridgePay

57

2.3. Generic Error Response

All of the service responses described in the preceding sections reflect a successful result. If the results
of a specific request are not successful, a “generic error” response will be returned instead of a
successful response. The generic error response returns the following parameters:

TransactionID The TransactionID value submitted with the original request.
R | RequestType The RequestType value from the original request that has failed.
R | ResponseCode numeric 5 A five-digit response code describing the results of the transaction.

See Appendix A.1 for a list of valid response values.

R | ResponseDescription string Description of the error response code (ResponseCode).

Response Layout

The following is an example of an error response due to an invalid client identifier (the TransactionID
value would be the actual value from the initial service call that failed):

<?xml version="1.0" encoding="utf -16"?>

<ErrorResponse>
<TransactionID> 0312- 7958- 4465- 0664</Transaction|D>
<RequestType>004</RequestType>
<ResponseCode>10020</ResponseCode>
<ResponseDescription> Invalid Client Identifier </ResponseDescription>
<responseMessage />

</ErrorResponse>

The following is an example of an error response due to invalid access credentials (the TransactionID
value would be the actual value from the initial service call that failed):

<?xml version="1.0" encoding="utf -16"?>

<ErrorResponse>
<TransactionID>0312 - 7958- 4465- 0664</TransactionID>
<RequestType>006</RequestType>
<ResponseCode>10024</ResponseCode>
<ResponseDescription>Invalid Credentials</ResponseDescription>
<responseMessage />

</ErrorResponse >

QBridgePay >8

A. Appendix

A.l. ResponseCode Values

The following table displays the possible numeric values and descriptions returned by BridgePay in the
ResponseCode field. It also describes the TPl Result code that is returned for each message. Note that
not all response codes between TPl and BridgePay have a one-to-one relationship.

00000 0 Successful request

00001 0 Partial Authorization

10001 19 Missing Reference Number

10002 23 Invalid Card Number - Blank/Null
10003 1010 Invalid Card Type - Doesn't match accepted card types
10004 24 Invalid Expiration Date - Blank/Null
10005 7 Invalid Security Code - Blank/Null
10007 23 Invalid Card Number - Not Numeric
10008 23 Invalid Length for card type

10009 24 Invalid Expiration Date - Card Expired
10010 7 Invalid Security Code - Not Numeric
10011 7 Invalid Transaction ID

10012 23 Invalid Card Number - Failed Mod10
10013 24 Invalid Expiration Date Value

10014 7 Invalid Security Code Length

10017 24 Invalid Expiration Date - Invalid Month
10018 24 Invalid Expiration Date - Invalid Year
10019 24 Invalid Expiration Date

10020 1 Invalid Client Identifier

10021 1007 Invalid Request Element — Missing Element
10022 1007 Invalid Request Type

10023 1007 Password Expired

10024 1001 Invalid Credentials

10025 7 Invalid Zip — Not Numeric

10026 7 Invalid Zip — Wrong Length

QBridgePay >9

10027 4 Invalid Amount — Blank/Null

10028 4 Invalid Amount — Not Numeric

10029 7 Invalid Request Date/Time

10030 7 Invalid Token

10031 7 Invalid Track

10032 7 Invalid Track Identifier

10033 108 Invalid Void Request

10034 7 Invalid Encryption ID

10035 23 Invalid Account Number — Blank/Null
10036 23 Invalid Account Number — Not Numeric
10037 1010 Invalid Payment Type — Blank/Null

10038 1010 Invalid Payment Type — Unrecognized Payment Type
10039 23 Invalid Account Number — Account Number Does Not Exist
10040 7 Missing Required Pass-Thru Data Element
10041 7 Missing / Invalid BIN

10042 108 Already Voided

20001 99 Tokenization Service Connection Error
20002 99 BridgePay Internal Server Error

20003 99 Client Service Unavailable

20004 99 Payment Service Sensitive Data Timeout
30004 1007 Invalid Request Message

30005 1007 Invalid Response Message

30006 1001 New Password Doesn't Match Confirmation Password
30007 1001 New Password Too Weak*

30008 23 Missing Payment Card Data

30009 99 Internal Payment Card Data Error

30010 99 Invalid Record Format

30011 5 Invalid Merchant Number (from Gateway)
30012 23 Bad Card Number (from Gateway)

30013 5 Invalid Store Number

30020 1007 Invalid Transaction Industry Type

30021 1007 Missing Transaction Industry Type

QBridgePay 60

30022 99 Processing Network Unavailable

30023 23 Invalid Account Number

30024 2 No Account

30025 12 Invalid Security Code

30026 4 Invalid Amount

30028 99 Settlement Failed

30029 99 Transaction Error

30030 99 Transaction data integrity validation error
30032 12 Denied by customer’s bank

30033 50 Insufficient funds

30034 12 Hold - Pick up card

30035 99 Incorrect PIN

30036 110 Duplicate Transaction

30037 12 Card reported lost

30038 12 Card reported stolen

30039 99 Service not allowed

30040 99 Stop Recurring

30041 99 Unattempted Batch Decline

30042 99 Maximum transaction limit is exceeded at the moment. Try processing

your transaction tomorrow.

30043 99 Re-enter Transaction

30044 12 Unmapped decline

30045 99 Billing profile configuration error
30046 99 Pin Try Exceeded

30047 99 Refund was not processed/received
30048 99 Chargeback received

30049 99 Processing Canceled by User
30050 1007 Invalid Transaction Category
30051 1007 Invalid Verification Status

30052 1007 Invalid Terminal Type

30053 1007 Invalid Petroleum Product Type
30060 1007 Invalid App User Id

30061 99 Account insert failed

QBridgePay 61

30062 99 Merchant insert failed

30070 1001 New Password Previously Used
30071 1001 Missing Clerk Id

30072 13 Call for Authorization

30073 12 Card is Restricted

30074 12 Declined due to fraud rules

30075 12 Bank Account Blacklisted

30100 1007 Invalid Account Data — Blank/Null
30101 1007 Invalid EMV Tag Data — Blank/Null
40001 99 Lodging Reauth Failed

40002 99 Missing Lodging Folio Number
80000 0 Gateway Services Available

80001 99 Gateway Services Unavailable

80002 1001 Invalid Purchase Token

90000 99 Token Store failed to encrypt a token
90001 99 Token Store failed to decrypt a token
99999 Unknown Error

QBridgePay 62

A.2. Base64-Encoded SOAP Message Sample

The following message samples show the proper way to base64 encode a request message and the
resulting base64-encoded response message:

Request Message

<!-- AuthTest_BadClientID -- >
<soapenv:Envelope xmiIns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmins:reg="http://bridgepaynetsecuretx.com/requesthandler">

<soapenv:Header/>

<soapenv:Body>

<req:ProcessRequest>
<req:requestMsg>
PHJIcXVIc3RIZWFkZX1+DQoglDxDbGIlIbnRIZGVudGImaWVyPkJhZDwvQ2xpZW50SWRIbnRpZmlicjANCIAgPFRYYW5zY!
W9uSUQ+MTAWMTwvVHIhbnNhY3Rpb25JRD4NCIAgPFJIcXVIc3RUeXBIPJAWNDwvUmMVxdWVzdFR5cGU+DQogIDxSZ>
FOZVRpbWU+MDIVMTIVMjAXMjwvUmVxdWVzdERhdGVUaW1IPgOKICA8R RV FpbjwvRGItY WIuPgOKICA8VXNIcj5
1c2VyPC9Vc2VyPgOKICABUGFzc3dvemQ+cGFzczwvUGFzc3dvemQ+DQogIDxyZXF1ZXNOTWVzc2FnZT4ANCgk8UGF5b
Y291bnROAW1iZXI+NTEWNTEWNTEWNTEWNTEWMDWVUGF5bWVUdEFjY291bnROdW1iZXI+DQoJPFNpdGVDb2RIPjAv
GVDb2RIPgOKCTxab251Q29kZTAMDAXPC9ab251Q29kZT4NCgk8RXhwaXJhdGlvbkRhdGU+MDMyMDEOPC9FeHBpcmFO
FOZT4NCgk8WmIwQ29kZT4zNDk1MjwvWmlwQ29kZT4NCgk8Q2FyZFNIY3VyaXR5Q29kZT450Tk8LONhcmRTZWN1cmi(
+DQoJPEFtb3VudD4xXxNTAuUMDABSLOFtb3VudD4NCIAgICAgICAgPEVUY3J5cHRpb25JRD4yMDEYMDgXxNDA2NAMIYEIB
cHRpb25JRDANCIAgPC9yZXF1ZXNOTWVzc2FnZT4ANCjwvemVxdWVzdEhlYWRIcj4=
<req:requestMsg>
</req:ProcessRequest>

</soapenv:Body>

</soapenv:Envelope>

Response Message

<s:Envelope xmins:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Body>
<ProcessRequestResponse xmIns="http://bridgepaynetsecuretx.com/requesthandler">
<ProcessRequestResult>
PD94bWwgdmVyc2IvbjoiMS4wliBIomNvZGluZz0idXRmLTE2Ij8+DQo8RXJyb3JSZXNwb25zZ SB4bWxuczp4c2k9ImhOdHA
y93d3cudzMub3JnLzIWMDEVWE1MU2NoZW1hLWIuc3RhBa#dWWxuczp4c2Q9Imh0dHA6LYy93d3cudzMub3JnLzIWMDEVWE
1MU2N0ZW1hlj4NCiAgPFRyYW5zYWN0OaW9uSUQ+MTAWMTwvVHJIhbnNhY3Rpb25JRDANCIAgPFJIcXVIc3RUeXBIPjAy
xdWVzdFR5cGU+DQogIDxSZXNwb25zZUNvZGU+MTAWMJA8L1JIc3BvbnNIQ29kZTANCjwvRXJyb3JSZXNwb25zZT4=
</ProcessReq uestResult>
</ProcessRequestResponse>
</s:Body>
</s:Envelope>

QBridgePay 63

A.3. Including Merchant Information

Depending upon the several factors, you may be required to send more information to BridgeComm for
it to correctly identify the merchant information it should use for processing. These factors include
what technology you are using to connect to BridgeComm, whether you are using BridgePay’s internal
merchant lookup service or an outside service, and, in some cases, the processor intended to receive
the request. In your welcome package, you should receive this information from BridgePay once your
account has been established.

To include this information in a request to BridgeComm, you will simply include another set of fields in
the request message itself. Although there are many configurations and more are being added each
day, the most common is the combination of Merchant Code and Merchant Account Code. If you are
using the BridgePay internal merchant lookup service, you will be using these two fields.

To add them to the request, simply place them anywhere in the body of the requestMessage element,
prior to Base64 encoding. See the example below with the Merchant Code and Merchant Account
Codes highlighted.

XML Request Message

<?xml version="1.0" encoding="utf -16"?>

<requestHeader>
<Clientldentifier></Clientldentifier>
<Transaction|D></Transaction| D>
<RequestType>004</RequestType>
<RequestDateTime></RequestDate Time>
<User></User>
<Password></Password>
<requestMessage>

<MerchantCode></MerchantCode>
<MerchantAccountCode></MerchantAccountCode>

</requestMessage>
</requ estHeader>

Note that not every request type requires this information and not every request type requires these
exact fields. Be sure to work with your BridgePay representative when determining which message
types require the merchant lookup fields and their content.

QBridgePay

64

A.4. Industry Specific Fields

Depending upon the industry, you can receive better transaction rates by specifying your industry and
including industry specific fields in transaction requests. This appendix provides information for each
specialized industry and what fields you can use to support these transactions.

Lodging

RoomNumber

C | FolioNumber

C RoomRateAmount

O | RoomTaxAmount

R | LodgingChargeType

C | CheckinDate

C | CheckOutDate

O | StayDuration

C | SpecialProgramType

O | DepartureAdjAmount

C | LodgingltemCount

C | Lodgingltems

String

String

Numeric

Numeric

Enum

Date

Date

Numeric

Enum

Numeric

Numeric

Collection

15

Hotel room number

Hotel folio number

Required when LodgingChargeT

Daily room rate. Implied decimal.

Required when LodgingChargeT

Tax charged on daily rate. Implied decimal.

Type of service for which this transaction is processed.
i H = Hotel

R = Restaurant

G = Gift Shop

S = Health Spa

B = Beauty Shop

F = Convention Fee

=A =4 -4 -4 A A

T =Tennis
1 O = Golf

The date of actual or anticipated check-in.

Required when LodgingChargeT

The date of actual or anticipated check-out.

Required when LodgingChargeT

Indicates the length of anticipated, actual or incremental stay.

Important when the cardholder did not stay at the hotel.
9 AD = Advance deposit
9 AR = Assured reservation
1 DC = Delayed charge
9 ES = Express service
9 NC = Normal charge

9 NS = No show charge

Required when LodgingChargeT

Additional amount charged after cardholder left the hotel.

Conditional, required if lodging items present in request. Indicates
number of lodging industry items purchased as part of this
transaction. See Lodging Item Records for more detail.

Required when LodgingChargeT

Collection of lodging item records.

QBridgePay

65

Lodgingltem Records

Clients processing lodging industry transactions and desiring to itemize the charges for additional
service can include lodging items sub-records as a part of the request message. When lodging item
information is supplied, the client is required to indicate the number of sub-records in the
LodgingltemCounfield.

R | LodgingltemType Enum Lodging extra charge type
9 G = Gift Shop
9 L = Laundry
9 B = Mini bar
9 R = Restaurant

il T =Telephone

R | LodgingltemAmount Numeric 8 Amount for lodging extra charge item. Implied decimal.

EXAMPLE

To process an authorization or capture via the ProcessRequest access method for a merchant using
lodging industry fields, the RequestMessage element would have the following tags embedded within it:

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>

<requestMessage>

<RoomNumber></RoomNumber>
<FolioNumber>< /FolioNumber>
<RoomRateAmount></RoomRateAmount>
<RoomTaxAmount></RoomTaxAmount>
<LodgingChargeType></LodgingChargeType>
<CheckInDate></CheckInDate>
<CheckOutDate></CheckOutDate>
<StayDuration></StayDuration>
<SpecialProgramType></SpecialProgr = amType>
<DepartureAdjAmount></DepartureAdjAmount>
<LodgingltemCount></LodgingltemCount>
<Lodgingltem>
<LodgingltemType></LodgingltemType>
<LodgingltemAmount></LodgingltemAmount>
</Lodgingltem>

</requestMessage>
<requestHeader>

QBridgePay 66

To process an authorization or capture via the ProcessJsonRequest access method for a merchant using

lodging industry fields, the elements would be added into the JSON request.

{ "request "

|

"dataElements": [

e R Rae Rarn Rantn Rt R Kae Ko Ko Rann Xatn)

"name':
"name':
"name':
"name':
"name':
"name':
"name':
"name':
"name':
"name':
"name':
"name':

"roomNumbet', "value ": ™ 1},
"folioNumber ", "value ": ™ 1},
"roomRateAmount', "value ": "™ }
"roomTaxAmount', "value ": "™ },
"lodgingChargeType ", "value ": ™ 1},
"checkinDate ", "value ": ™ 1},
"checkOutDate ", "value ": ™ 1},
"stayDuration ", "value": "™ 1},
"specialProgramType ", "value ": "™ 1},
"departureAdjAmount ", "“value ": "™ 1},
"lodgingltemCount ", "value ": "™ 1},

"lodging ltems": [

{ "dataElements ": [

{ "namé: "lodgingltemType ", "value ":
{ "namé: "lodgingltemAmount ", "value "

{ "dataElements ":[

}
H
H}

{ "namé: "lodgingltemType ", "value ":
{ "namé: "lodgingltemAmount ", "value "

QBridgePay

67

Car Rental
I e

RentalAgreementNumber string Car Rental Agreement Number. Required as part of the

Rental Key.

O | RentalDailyRateAmount integer 8 Total rent amount per day. Implied decimal.

R | RentalDuration integer 4 Car Rental Period.

O | RentalExtraChargesAmount integer 8 Can rental special services amount. Implied decimal.

O | RentallnsuranceAmount integer 8 Car insurance amount. Implied decimal.

O | MaxFreeMiles integer 8 Total mileage for rent period.

O | MileRateAmount integer 8 Total rent amount per mile. Implied decimal.

R | RentalName string 20 Name of the person who rented the car.

O | RentalCity string 35 City where the car rental starts.

O | RentalCountryCode string 2 Country where the car rental starts.

R | RentalDate date 10 Date when the car rental starts. (MM/DD/YYYY format)

O | RentalState string 3 State where the car rental starts.

O | RentalTime integer 4 Car rental start time in 24-Hour Format. (HHMM)

O | ReturnlLocationCode string 10 Identification code of the place where car was returned.

O | ReturnCity string 35 City where the car is returned

O | ReturnCountryCode string 2 Country where the car is returned.

R | ReturnDate date 10 Date when the car should be returned.

O | ReturnState string 3 State where the car is returned.

O | ReturnTime integer 4 Time when the car should be returned in 24-Hour
Format. (HHMM)

R RentalSpecialProgramType string 2 String based enum representing the special program type
for the rental. Accepted values are AD (Advance
Deposit), AR (Assured Reservation), DC (Delayed Charge),
ES (Express Service), NC (Normal Charge), NS (No Show
Charge) and FR (Frequent Renter)

O | TotalMiles integer 8 Rented car total mileage (miles on car)

O | RentalExtraChargeltemCount integer 4 Count of extra charges included in the transaction.

O | RentalExtraChargeltems Collection n/a List of extra charges. See below.

QBridgePay 68

Car Rentaltem Records

Clients processing car rental industry transactions and desiring to itemize the charges for additional
service can include car rental items sub-records as a part of the request message. When car rental item
information is supplied, the client is required to indicate the number of sub-records in the
RentalExtraChargéemCountfield.

RentalExtraChargeltemType Enum Car rental extra charge type
9 M = Extra Mileage
9 S=Gas

9 N = Late Return
9 W = One-Way Service
1 P = Parking Violation

R | RentalExtraChargeTypeAmount Numeric 8 Amount for car rental extra charge item. Implied
decimal.

EXAMPLE

To process an authorization or capture via the ProcessRequest access method for a merchant using car
rental industry fields, the RequestMessage element would have the following tags embedded within it:

<?xml version="1.0" encoding="utf -16"?>
<requestHeader>
<requestMessage>
<RentalName></ RentalName>
<RentalCity ></RentalCity >
<RentalState ></RentalState >
<RentalCountryCode ></RentalCountryCode >
<RentalDate ></RentalDate >
<RentalTime ></RentalTime >
<ReturnCity ></ReturnCity >
<ReturnState ></ReturnState >
<ReturnCountryCode ></ReturnCountryCode >
<RentalExtraChargesAmount ></RentalExtraChargesAmount >
<ReturnDate></ReturnDat e>
<ReturnTime></ReturnTime>
<RentalAgreementNumber></RentalAgreementNumber>
<RentalDailyRateAmount></RentalDailyRateAmount>
<RentalDuration></RentalDuration>
<RentallnsuranceAmount></RentallnsuranceAmount>
<MaxFreeMiles></MaxFreeMiles>
<Mile RateAmount></MileRateAmount>
<ReturnLocationCode></ReturnLocationCode>
<RentalSpecialProgramType></RentalSpecialProgramType>
<TotalMiles></TotalMiles>
<RentalExtraChargesltemCount ></RentalExtraChargesltemCount >
<RentalExtraChargeltem >
<RentalExtraCharge ItemType></ RentalExtraCharge ItemType>
<RentalExtraCharge ItemAmount></ RentalExtraCharge ItemAmount>
</ RentalExtraChargeltem >
</requestMessage>
<requestHeader>

QBridgePay 69

To process an authorization or capture via the ProcessJsonRequest access method for a merchant using
lodging industry fields, the elements would be added into the JSON request.

{ "request ":{
"dataElements": [

{ "namé: "rentalName ", "value ": "™ 1},

{ "namé: "rentalCity ", "value": "™ 1},

{ "namé: "rentalState ", "value ": "™ 1},

{ "namé: "rentalCountryCode ", "value ": "™ 1},

{ "namé: "rentalDate ", "value": "™ 1},

{ "namé: "rentalTime ", "value": "™ 1},

{ "namé: "returnCity ", "value": "™ 1},

{ "namé: "returnState ", "value ": "™ 1},

{ "namé: "returnCountryCode ", "value ": ™ },

{ "namé: "returnTime ", "value": "™ 1},

{ "namé: "rentalExtraChargesAmount ", "value ": "™ },
{ "namé: "returnDate ", "value": "™ 1},

{ "namé: "rentalAgreementNumber ", "value ": "™ },

{ "namé: "rentalDailyRateAmount ", "value ": "™ },

{ "namé: "rentalDuration ", "value ": "™ },

{ "namé: "rentallnsuranceAmount ", “"value ": "™ },

{ "name: "maxFreeMiles ", "value ": "™ 1},

{ "namé¢: "mileRateAmount"”, "value ": "™ },

{ "namé: "returnLocationCode ", "value": ™ },

{ "namé: "rentalSpecialProgramType ", "value ": "™ 1},
{ "namé¢: "totalMiles ", "value": " },

{ "name: "rentalExtraCharges ItemCount", "value ": ™ 1},
{ "namé: "rentalExtraCharge Items":[

{ "dataElements ":[
{ "namé: "rentalExtraCharge ItemType", "value ": ™ 1},
{ "namé: "rentalExtraCharge ItemAmount", "value ": "™ }

{ "dataElements ":[
{ "namé: "rentalExtraCharge ItemType", "value ": ™ 1},
{ "namé: "rentalExtraCharge ItemAmount", "value ": ™ }
}H
H
1}

PerformingGroupedAuthorizations & Captures

Initial Authorizations

The formatting and content of a transaction request to BridgeComm will identify whether the request is
an initial authorization or an incremental authorization. A series of transactions for lodging or car rental
are identified by a transaction groupkey. The group key is comprised of four data elements: the card
number/token, the check-in date, the folio number or rental agreement number and the merchant
lookup information.

When sending a grouped transaction to BridgeComm, the key is constructed based on the data
elements mentioned above. If the transaction is the first transaction using that key, an initial
authorization is created and the settlement delay is set to either the duration of the stay or the
difference between the check-in date (rental start) and the check-out date (rental end).

Incremental Authorizations

Incremental authorizations can be generated in one of two ways. The originating system can either
send an incremental request by providing the amount to increment the total, or by sending the new
total. For example, if the initial authorization is $250.00, to increase the total authorization amount to

QBridgePay

70

$300.00, the originating system can either send a $50.00 incremental message, or a $300.00 total
message. Both operations end up in acquiring only $50.00 more for the key.

To send an incremental authorization with only the delta amount, the message to BridgeComm will set
the TransactionVpefield to increment, and send the incremental amount in the Amount field. The
originating system must also include all other elements required to process the transaction.

To send an incremental authorization be specifying the new total amount, the message to BridgeComm
will set the TransactionTypdield to sale-auth, and send the new total amount in the Amountfield. The
originating system must also include all other elements required to process the transaction.

CapturdCheckOut/Return

The capture process for a group of authorizations for a key is handled in much the same way. Itis not
necessary to capture each individual authorization. Instead, the merchant sends a capture request (See
2.2.11 — Capture Request) including the Card Number or Token, Check-In Date, Folio Number (or Rental
Agreement Number) and Merchant Identification information. All authorizations for that key are then
totaled and captured as one transaction in preparation for settlement. If the final amount of the
transaction is different than the amount authorized to date, the merchant can also send the final
amount with the capture message. This will trigger either a partial reversal (if the final amount is less
than the total authorized to date amount) or a final incremental authorization (if the final amount is
greater than the total authorized to date amount). This capture method also disables the settlement
delay, allowing the transaction to be included in the next settlement batch.

QBridgePay

71

Healthcare

When processing a healthcare industry transaction (using an FSA or HSA account) additional amount
fields need to be specified. The only amount that is required is HealthCareAmt, while other amounts are
optional. If medical transportation was involved, then TransitAmtshould be added.

Depending on the type of service rendered, additional amounts can be specified to HealthCareAmt to
indicate how much was spent on prescription, vision/optical, dental and clinic/hospitalization services.
The total of prescription, vision, dental and clinic amounts can be less than or equal to HealthCareAmt.

HealthCareAmt Numeric
O | TransitAmt Numeric
O | PrescriptionAmt Numeric
O | VisionAmt Numeric
O | DentalAmt Numeric
O | ClinicAmt Numeric
0 | IsQualifiedIlAS Boolean

EXAMPLE

Indicates the portion of the amount field that was spent on
healthcare-related services. Implied decimal.

Indicates the portion of the amount field that was spent on
healthcare-related transportation. Implied decimal.

Indicates the portion of the HealthCareAmt field that was spent on
prescription drugs. Implied decimal.

Indicates the portion of the HealthCareAmt field that was spent on
vision-related (optical) medical services. Implied decimal.

Indicates the portion of the HealthCareAmt field that was spent on
dental medical services. Implied decimal.

Indicates the portion of the HealthCareAmt field that was spent on
hospitalization. Implied decimal.

Indicates whether items purchased were verified against IIAS as
qualified for healthcare purchases. Value must be Trueor False

To process an authorization via the ProcessRequest access method for a merchant using healthcare
industry fields, the RequestMessage element would have the following tags embedded within it:

<?xml version="1.0" encoding="utf
<requestHeader>

<requestMessage>

<TransCatCode>H</TransCatCode>
<HealthCareAmt></HealthCareAmt>

<TransitAmt>< /TransitAmt>

<PrescriptionAmt></PrescriptionAmt>

<VisionAmt></VisionAmt>
<DentalAmt></DentalAmt>
<ClinicAmt></ClinicAmt>
<IsQualifiedllAS></IsQualifiedI|AS>

</requestMessage>
<requestHeader>

QBridgePay

72

To process an authorization via the ProcessJsonRequest access method for a merchant using healthcare

industry fields, the elements would be added into the JSON request.

{ "request "

|

"dataElements": [

P R R R R e e e

H
H}

"name':
"name':
"name':
"name':
"name':
"name':
"name':
"name':

"transCatCode ", "value ": "H' },
"healthCareAmt ", "value ": "™ 1},
"transitAmt ", "value ": "™ },
"prescriptionAmt ", “"value ": "™ },
"visionAmt ", "value ": "™ },
"dentalAmt ", "value ": "™ },
“clinicAmt ", "value": "™ },
"isQualifiedllAS ", "value ": "™ },

QBridgePay

73

A.5. Track Data Handling

If you are sending track data to BridgeComm, there are two ways of sending the data. You may choose the
integration specifics that work best for you. The options are Combined Track Information (CTI) or Split Track
Information (STI).

Combined Track Information (CTI)

If your integration requires sending track information all in one field, you can use either the TrackData
element or the Trackelement to send the data. It should contain both Track 1 and Track 2
concatenated and sent in one string.

To send the data without extra encryption, simply concatenate the two fields with no extra spaces. You
must include all start and end sentinels and the field separators as well.

To send the data with hardware level encryption, your reader must support encrypting combined track
data. This encrypted combined track data would then be placed in the TrackDataor Trackelement.

To send the data with RSA level encryption, you must use the encryption details received from the
Generate Encryption Kemethod (003) to encrypt the data. Then send the encrypted string in the
TrackDateor Trackelement.

Split Track Information (STI)

If your integration requires sending track information in separate fields, you can use the Trackland
Track2 data elements to send the data.

To send the data without extra encryption, simply send the appropriate data elements in the
appropriate fields. You must include all start and end sentinels and the field separators as well.

To send the data with hardware level encryption, your reader must provide the encrypted data in
separate fields. This encrypted combined track data would then be placed in the Trackland Track2
elements respectively.

RSA level encryption is not available for Split Track Informatidn.use RSA level encryption, you will
need to send the data using the CTI method described above.

QBridgePay 74

A.6. Purchase Tokens

If you wish to use Purchase Tokens to further secure your payment transactions, you must first acquire a purchase
token from BridgeComm. A Purchase Token is valid for exactly one transaction and only for 15 minutes after
creation. This appendix describes how to acquire and consume a purchase token.

Acquiring a Purchase Token

To acquire a purchase token, your application must consume the AcquirePurchaseToken method on the
ActionService web service.

string AcquirePurchaseTokdetring userName, string password, string certificationld, int
transactionAmount, string purchaserinfo, string transactioninfo

userName String The username assigned for accessing BridgeComm
R | password String The password assigned to the user for accessing BridgeComm
O | certificationld String Not required. Default to and empty string. Reserved for future
use.
R | transactionAmount Int 8 The implied decimal amount of the transaction being

preauthorized. (e.g. 125 for a $1.25 authorization)

O | purchaserinfo String Not required. A merchant provided string identifying the customer
account the transaction is for. Compared with
CustomerAccountCode element in the transaction request.

O | transactioninfo String Not required. A merchant provided string identifying the invoice
the transaction is for. Compared with the InvoiceNum element in
the transaction request.

When BridgeComm receives a request for a new purchase token, BridgeComm will first look to see if a
purchase token for a similar request using the same data elements has already been generated and not
yet consumed. If so, no new purchase token will be generated and the service will return an empty
string.

If no existing purchase token exists, one will be generated and returned to the merchant.

Consuming a Purchase Token

Once the merchant has received a purchase token, the merchant has 15 minutes to use the token. To
consume the token, the merchant must send the purchase token in the authorization request and all
information used to create the purchase token must be included in the request.

If the merchant included the purchaserinfoin the request to acquire a purchase token, that data must
be included in the CustomerAccountCode element of the transaction request.

If the merchant included the transacionInfo in the request to acquire a purchase token, that data must
be included in the InvoiceNum element of the transaction request.

QBridgePay 75

Example

1. Merchant calls AcquirePurchaseToken

1 AcquirePurchaseTokdfuser”, “password”, “”, 500, “12345”, “98765")
2. Merchant receives PurchaseToken

1 returnValue = “OEOD6C55-AF5E-49AE-8DE7-001B08A550CF”
3. Merchant calls ProcessRequest

1 ProcessRequegt
<requestHeader>
<Clientldentifier>SOAP</Clientldentifier>
<Transactionld>1234567890</Transactionld>
<RequestType>004</RequestType>
<RequestDateTime>2015-01-01</RequestDateTime>
<requestMessage>

<PurchaseToken>0EOD6C55-AF5E-49AE-8DE7-001BO8A550CF </PurchaseToken>
<Amount>500</Amount>
<CustomerAccountCode>12345</CustomerAccountCode>
<InvoiceNum>98765</InvoiceNum>

</requestMessage>
</requestHeader>

Other Uses of Purchase Tokens

Once acquired, a Purchase Token can be used in a Get Merchant Info request (011) or a Multi-Use
Token request (001) within the 15 minute time period without consuming the purchase token. This
allows for a consumer to work with the same purchase token if there are informational
requirements that must be met before completing the transaction.

After a Purchase Token is consumed, it can still be used for Voiding or Refunding the original
authorization or Sale that consumed the token. The Void/Refund operation can only be performed
once per consumed Purchase Token.

QBridgePay 76

A.7. EMV Processing

Processing EMV transactions through BridgeComm requires that the merchant provide a few more details in the
transaction request. If the EMV reader is an encrypted reader, the merchant will also need to send the encrypted
swipe data to BridgeComm as well to achieve tokenization.

Field Requirements

1 EMVTags- This element contains all the EMV tags returned from the EMV reader, combined into a
single string using TLV encoding.

EntryModeType- This field identifies how the transaction was processed by the terminal.
EntryMediumType- This field identifies what type of media was used to collect the transaction.

EntryPINModeType- This field identifies whether the media used provides PIN features.

= =4 =a =

TerminalCapabilities- This field identifies the capabilities of the terminal used to collect the data.

EMV Field&Example(Unencrypted)

<requestHeader>
<Clientldentifier> clientld </Clientldentifier>
<TransactionID> XXXXXXXXXXXXXXXX/TransactionID>
<RequestType>004</RequestType>
<RequestDateTime>01/ 01/2015</RequestDateTime>
<User>mbpUserx/User>
<Password>mbpPassword/Password>
<requestMessage>
<transindustrytype>RE</transindustrytype>
<TransactionType>sale - auth</TransactionType>
<AcctType>R</AcctType>
<Amount>1M0</Amount>
<MerchantCode>1000</MerchantCode>
<MerchantAccountCode> 1001</MerchantAccountCode>
<HolderType>P</HolderType>

<EMVTags#F07A0000000031010500A5669736120446562697457104450649200973734D19092260003680F82023C0(
8407A0000000031010950508000000009A031504309B02E8009C01005F2A0208405F3401019F02060000000005009F
607A00000000310109F0902008C9F100706010A03A020009F120A566973612044656269749/K0208409F1E08383032
34373636319F21032109149F2608FA940EE08082F8A59F2701809F3303EO0B8C89F34031E03009F3501229F3602001
F37043F2BE8OF9F3901059F4005F000F0A0019F4104000003819F530152</EMVTags>

<EntryMedium>CC</EntryMedium>

<EntryMode>HP</EntryMode>

<EntryPIN Mode>X</EntryPINMode>

<TerminalCapabilities>unknown|unused|manual|stripe|barcode|qrcode|ocr|icc|contactless|signature
[rfid|micr</TerminalCapabilities> </requestMessage>
</requestHeader>

QBridgePay 7

EMV Fields Exampl&Encrypted)

<requestHeader>
<Clientldentif ier> clientld </Clientldentifier>
<Transaction|D> XXXXXXXXXXXXXXXX/Transaction|D>
<RequestType>004</RequestType>
<RequestDateTime>0 1/ 01/2015</RequestDate Time>
<User>mbpUsex/User>
<Password>mbpPassword/Password>
<requestMessage>
<transindustrytype>RE</transindustrytype>
<TransactionType>sale - auth</TransactionType>
<AcctType>R</AcctType>
<Amount>1®0</Amount>
<MerchantCode>1000</MerchantCode>
<MerchantAccountCode> 1001</MerchantAccountCode>
<HolderType>P</HolderType>

<Track>9990A46CC78DOCDACA4CB5A3F9A73A4CEF1127B642BD11A4CF89E290EBI6CFF1C745CC6ABID64ES3
<MSRKSN>910701000000002000CC</MSRKSN>
<Secure Format>SecureMag</SecureFormat>

<EMVTags>4F07A000000004101050104465626974204D617374684361726457105128570000000856D17086220000
0000820239008407A0000000041010950504002000009A031505089B02E8009C01005F2A0208405F3401009F020600
0000012009F0607A00000000410109F090200029F10120110A000002A0000000000000000000000FF9F121044656264
74204D617374657243617264F1A0208409F1E0838303138393539369F21031116219F26087FE93875A4F4F3899F27
1809F3303E0B8C89F34031E03009F3501229F360202229F37044BB2D57D9F3901059F4005F000F0A0019F4104000(
659F530152</EMVTags>

<EntryMedium>CC</EntryMedium>

<EntryMode>HP</EntryMode>

<EntryPINMode>X</EntryPINMode>

<TerminalCapabilities>unknown|unused|manual|stripe|barcode|grcode|ocr|icc|contactless|signature
|rfid|micr</TerminalCapabilities>

</requestMessage>
</requestHeader>

QBridgePay ’8

A.8. Non Gateway Transactions (Check/Cash)

BridgeComm is able to record transactions that did not occur within the gateway such as Check and Cash
transactions. To record a transaction of this nature, the merchant must send specific values to identify it as a Cash
or Check transaction.

Field Reguements

1 TransactionType- When sending a Check transaction or a Cash transaction, this field must be set to
saleinfo for transactions that represent income to the merchant or credit-info for transactions that
represent refunds or other credits the merchant is making for a customer.

1 AccowntType- If the request is recording a cash transaction, the AccountType field should be set to
A. If the request is recording a physical check transaction, the AccountType field should be set to K

1 ChecklmageFront If the request is recording a check transaction, the merchant can provide an
image of the front of the check using this field.

1 ChecltmageBack- If the request is recording a check transaction, the merchant can provide an image
of the back of the check using this field.

1 MICR-If the request is recording a check transaction, the merchant can provide the MICR data
associated with the check in this field.

CashFields Example

<requestHeader>
<Clientldentifier> clientld </Clientldentifier>
<Transaction|D> XXXX XXXXXXXXXXXX/Transaction|D>
<RequestType>004</RequestType>
<RequestDateTime>01/ 01/2015</RequestDate Time>
<User>mbpUsex/User>
<Password>mbpPassword/Password>
<requestMessage>
<transindustrytype>RE</transindustrytype>
<TransactionType>sale -info </TransactionType>
<AcctType> A</AcctType>
<Amount>100</Amount>
<MerchantCode>1000</MerchantCode>
<MerchantAccountCode> 1001</MerchantAccountCode>
</requestMessage>
</requestHeader>

QBridgePay 79

CheckFields Example

<requestHeader>
<Clientldentifier> clientld </Clientldentifier>
<Transaction|D> XXXXXXXXXXXXXXXX/Transaction|D>
<RequestType>004</RequestType>
<RequestDateTime>0 1/ 01/2015</RequestDate Time>
<User>mbpUsex/User>
<Password>mbpPassword/Password>
<requestMessage>
<transindustrytype>RE</transindustrytype>
<TransactionType>sale -info </TransactionType>
<AcctType> K</AcctType>
<ChecklmageFront >base64EncodedTIFFImage</ CheckimageFront >
<ChecklmageBack>base64EncodedTIFFImage</ CheckimageBack>
<MICR-:021000021:4099999992 < 1001</ MICR
<Amount>1®M0</Amount>
<MerchantCode>1000</MerchantCode>
<MerchantAccountCode> 1001</MerchantAccountCode>
</requestMessage>
</requestHeader>

QBridgePay

A.9. Check21 Processing

Processing with Check21 services is similar to ACH processing. In order to process via Check21, the merchant must

identify the transaction as a Check21 transaction and provide images of both the front and back of the physical

check, along with the MICR data retrieved from the check reader.

Field Requirements

TransIndustryType- When sending a Check21 transaction this field must be set to C21

AccowntType— When sending a Check21 transaction, this field should be provided in the same
manner as an ACH transaction with either Cfor checking account or Sfor saving account.

BankAccountNun+ As with any ACH transaction, this field must contain the account number of the

transaction.

RoutingNum- As with any ACH transaction, this field must contain the routing number associated

with the account number.

ChecklmageFront If the request is recording a check transaction, the merchant can provide an

image of the front of the check using this field.

CheclkmageBack- If the request is recording a check transaction, the merchant can provide an image

of the back of the check using this field.

MICR- If the request is recording a check transaction, the merchant can provide the MICR data

associated with the check in this field.

Check 2Fields Example

<requestHeader>
<Clientldentifier> clien tld </Clientldentifier>
<TransactionID> XXXXXXXXXXXXXXXX/TransactionID>
<RequestType>004</RequestType>
<RequestDateTime>01/ 01/2015</RequestDate Time>
<User>mbpUserx/User>
<Password>mbpPassword</Password>
<requestMessage>

<transindustrytype = >C2I</transindustrytype>
<TransactionType>sale</TransactionType>

<AcctType> C</AcctType>
<BankAccountNum>021000021</BankAccountNum>
<RoutingNum>4099999992</RoutingNum>

<ChecklmageFront >base64EncodedTIFFImage</ ChecklmageFront >
<Checkl mageBack-base64EncodedTIFFImage</ CheckimageBack>
<MICR>:021000021:4099999992 < 1001</ MICR
<Amount>1M0</Amount>

<MerchantCode>1000</MerchantCode>

<MerchantAccountCode> 1001</MerchantAccountCode>

</requestMessage>
</requestHeader>

QBridgePay

81

A.10. TPl Emulation

For those merchants migrating from TPI to BridgePay, BridgeComm offers limited TPl Request Emulation so that

merchants can make minimal changes of their existing system to begin processing through BridgeComm.

The scope of this document does not include providing detailed information for sending TPI transactions. See the
PathwayLink implementation guide for more information regarding TPI transaction processing.

Emulation Endpoint

In order to process transactions using TPl formatting through BridgeComm, you must change the endpoint to

access BridgeComm’s TPl Emulation endpoint.

Certification

https://www.bridgepaynetsecuretest.com/PaymentService/TPIRequestHandler.asmx

Production

https://www.bridgepaynetsecuretx.com/PaymentService/TPIRequestHandler.asmx

Emulated Methods

The following methods are available via BridgeComm’s TPl Emulation Engine.

ProcessCreditCard Auth
Sale

Return

Void
Reversal
Adjustment

Force

GetlInfo StatusCheck

Processes Request Type “004” with Transaction Type “sale-auth”
Processes Request Type “004” with Transaction Type “sale”

If a previous gateway transaction Id is provided in the PNRef field:
Processes Request Type “012” with Transaction Type “refund”
If no previous gateway transaction Id is provided:

Processes Request Type “004” with Transaction Type “credit”
Processes Request Type “012” with Transaction Type “void”
Processes Request Type “012” with Transaction Type “void”
Processes Request Type “019” with Transaction Type “capture”

If an auth code is provided in the AuthCode field:
Processes Request Type “004” with Transaction Type “sale”
If no auth code is provided:

Processes Request Type “019” with Transaction Type “capture”

Processes Request Type “099”

QBridgePay

82

https://www.bridgepaynetsecuretest.com/PaymentService/TPIRequestHandler.asmx
https://www.bridgepaynetsecuretx.com/PaymentService/TPIRequestHandler.asmx

